Select observation definition to view

Filter

By Payload

JMAG_DL_FOB_Light_OnlyThis observation is introduced to characterise JMAG operations during downlink times where power resources from the SC may be more limited, and where SC attitude is driven by operational constraints In this particular observation FOB fluxgate is powered on with FSC as light-only.JMAG
JMAG_DL_Light_OnlyThis observation is introduced to characterise JMAG operations during downlink times where power resources from the SC may be more limited, and where SC attitude is driven by operational constraints. In this particular observation FIB & FOB fluxgates powered on with FSC as light-only.JMAG
PEP_GCO500_LOW_RATE_NEUTRALSGanymede Circular 500 km (GCO500) Low-Rate Mode for ENA and Neutrals Measurements. JENI , JNA and NIM on.PEP
PEP_GCO500_LOW_RATE_ENERGETICGanymede Circular 500 km (GCO500) Low-Rate Mode for Energetic Particle Measurements. JENI and JoEE on. Nadir deck to nadir.PEP
PEP_GCO500_LOW_RATE_PLASMAJDC and JEI on. Nadir deck to nadirPEP
PEP_JUPITER_EQUATORIAL_DOWNLINK_LOW_RATEMode for ensuring continuous coverage for in-situ particle plasma measurements while optimizing power and data volume. Should be on during downlink too. JDC and JEI on. Applies also to Jupiter High Inclination for now. Zenith or Nadir axes within +/-45 deg of Jupiter corotation vector.PEP
PEP_JUPITER_EQUATORIAL_HIGH_RATE_IN_SITUHigh-resolution mode for resolving boundary crossings, fast flow bursts, etc. All sensor on, except NIM. JENI in ion-mode. Applies also to Jupiter High Inclination for now. Zenith or nadir axes within ±45 deg of Jupiter’s corotation vector.PEP
PEP_GCO500_DOWNLINK_ENERGETICGanymede Circular 500 km (GCO500) Downlink Mode. Sensors on: JENI, JoEE Nadir deck to nadirPEP
PEP_GCO500_DOWNLINK_ENAGanymede Circular 500 km (GCO500) Downlink Mode. Sensors on, JNA, JENI (ENA mode) Nadir deck to nadirPEP
PEP_GCO500_DOWNLINK_PLASMAGanymede Circular 500 km (GCO500) Downlink Mode. Sensors on: JDC, JEI Nadir deck to nadirPEP
PEP_GCO500_IN_SITU_ENA_NIM_LOWRATEGanymede Circular 500 km (GCO500) sensor combination low rate. Sensors on: all Nadir deck to nadirPEP
PEP_GCO500_IN_SITU_NIM_HIGHRATEGanymede Circular 500 km (GCO500) NIM High Rate mode Sensors on: all Nadir deck to nadirPEP
PEP_GCO500_IN_SITU_NIM_LOWRATEGanymede Circular 500 km (GCO500) sensor combination low rate Sensors on: all Nadir deck to nadirPEP
PEP_GCO500_ENA_NIM_STARTUPGanymede Circular 500 km (GCO500) Sensor Startup mode. Sensors on: JNA; NIM, JoEE, JENI (ENA mode) Nadir deck to nadirPEP
PEP_GCO5000_ENA_NIM_STARTUPGanymede Circular 5000 km (GCO500) Sensor Startup mode. Sensors on: JNA; NIM, JENI (ENA mode) Nadir deck to nadirPEP
PEP_GCO5000_ENA_NIMGanymede GCO5000 neutral monitor mode (could be relevant also for GCO5000 & GEO)PEP
PEP_GCO500_ENA_NIMGanymede GCO500 neutral monitor mode (could be relevant also for GCO5000 & GEO) Sensors on: JNA; NIM, JoEE, JENI (ENA mode) Nadir deck to nadirPEP
PEP_GCO500_IN_SITU_ENAGanymede GCO500 In-situ monitor mode (could be relevant also for GCO5000 & GEO) Sensors on: all except NIM Nadir deck to nadirPEP
PEP_GCO500_IN_SITU_HIGHRATEGanymede GCO500 In-situ monitor mode (could be relevant also for GCO5000 & GEO) Sensors on: all except NIM Nadir deck to nadirPEP
PEP_GCO500_IN_SITUGanymede GCO500 In-situ monitor mode (could be relevant also for GCO5000 & GEO) Sensors on: all except NIM Nadir deck to nadirPEP
PEP_GCO500_PLASMA_ENERGETICGanymede GCO500 In-situ monitor mode (could be relevant also for GCO5000 & GEO) All sensors on except JNA & NIM Sensors on: JDC, JEI, JoEE, JENI (ion mode)PEP
PEP_GCO5000_ENAGanymede GCO5000 surface and exosphere ENA imaging/sampling Sensors on: JNA, JENI (ENA mode)PEP
JMAG_CONTINOP_FIB_FOB_Light_OnlyJMAG mode (FIB FOB Light Only), this mode ensures that while FIB and FOB are collecting science the Scalar sensor also has power to its laser but is not collecting science data. This helps to protect the fibres from radiation damage, necessary for the Europa phase due to its radiation environment.JMAG
GALA_WARMUP_GANneeded right before any science observation from GALA during Ganymede phase (when working at 30Hz TBC) Duration: 90minGALA
SWI_SCIENCEPlace holder: one of the ASW mode, where the science script will be run ( i.e. from SWI_TSYS_CTS down to SWI_MOON_NADIR_STARE_FS) during the missionSWI
SWI_SPECTRAL_SCAN_CTS_FSSame as SWI SPECTRAL SCAN CTS PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending ∼100% of the integration time on-source. If the purity of the spectral band is good enough, there is an option to precompute ON−OFF for the CTS before downlink. A single execution can cover up to 9 tunings. Pointing Type: S/C: nadir or limb. Instrument: nadir or limb, using the SWI mechanism if S/C points nadir and to reach the moonsSWI
SWI_SPECTRAL_SCAN_CTS_PSInvestigation of the atmospheric composition of Jupiter and the Galilean moons. The whole frequency range available to SWI is scanned. This mode is nominally meant for deep integrations and requires numerous repetitions (e.g. monitoring of the moons). Two CTS spectra are recorded for 60 seconds over 10000 channels (16bit coding). Position-switch calibration method. A single execution can cover up to 13 tunings. Pointing Type: S/C: nadir or limb. Instrument: nadir or limb, using the SWI mechanism if S/C points nadir and to reach the moonsSWI
SWI_SPECTRAL_SCAN_ACS_FSSame as SWI SPECTRAL SCAN ACS PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending ∼100% of the integration time on-source. The ACS does not allow to pre-compute ON−OFF before downlink. A single execution can cover up to 11 tunings. Pointing Type: S/C: nadir or limb. Instrument: nadir or limb, using the SWI mechanism if S/C points nadir and to reach the moonsSWI
SWI_SPECTRAL_SCAN_ACS_PSInvestigation of the atmospheric composition of Jupiter and the Galilean moons. The whole frequency range available to SWI is scanned. This mode is nominally meant for deep integrations and requires numerous repetitions (e.g. monitoring of the moons). Two ACS spectra are recorded for 60 seconds over 1024 channels. Position-switch calibration method. A single execution can cover up to 16 tunings. Pointing Type: S/C: nadir or limb. Instrument: nadir or limb, using the SWI mechanism if S/C points nadir and to reach the moonsSWI
PEP_FLYBY_FAR_DEPARTURE_LOW_RATE_ENAEuropa environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (high time resolution for short term variations) Europa imaging (JNA) & Europa torus (JNA imaging + in-situ) All sensors on except NIM (in standby or off). JENI in Combo mode (half in ion mode, half imaging) NIM in ram direction (X-Y S/C plane)PEP
PEP_FLYBY_FAR_DEPARTURE_LOW_RATEEuropa environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (high time resolution for short term variations) Europa imaging (JNA) & Europa torus (JNA imaging + in-situ) All sensors on except NIM (in standby or off). Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI)PEP
PEP_FLYBY_FAR_DEPARTURE PEP
PEP_FLYBY_DEPARTUREEuropa environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (high time resolution for short term variations) Europa imaging (JNA) & Europa torus (JNA imaging + in-situ) All sensors on except NIM (in standby or off) Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI)PEP
PEP_FLYBY_CLOSEST_APPROACHLocal moon-magnetosphere interaction observation: plasma moments, energetic particle spectra and pitch angle distributions (high time resolution for short term variations) Europa imaging (JNA). Dense exosphere (NIM) Sensors on: all Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI) Moon in JNA FoV Angle of NIM_NEUION_S0 from JUICE_EUROPA_RAM or JUICE_GANYMEDE_RAM or JUICE_CALLISTO_RAM velocity less than 5 deg at CA Solar panel rotation angle (SADM) SADM > 74° or SADM < -74° Moon in JNA FoVPEP
PEP_FLYBY_APPROACHMoon environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (low time resolution). Moon imaging (JNA) & Europa torus (JNA imaging + in-situ) if near Europa. High altitude exosphere (NIM) Sensors on: all Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI ions) Moon in JNA FoV Angle of NIM_THERMAL_1 or THERMAL_2 from JUICE_EUROPA_RAM or JUICE_GANYMEDE_RAM or JUICE_CALLISTO_RAM velocity less than 60 degPEP
PEP_FLYBY_FAR_APPROACH_MEDIUM_RATEMoon environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (low time resolution). Europa torus (JNA imaging + in-situ) if near Europa Sensors on: all Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI ions) Moon in JNA FoV Angle of NIM_THERMAL_1 or THERMAL_2 from JUICE_EUROPA_RAM or JUICE_GANYMEDE_RAM or JUICE_CALLISTO_RAM velocity less than 60 degPEP
PEP_FLYBY_FAR_APPROACH_LOW_RATEMoon environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (low time resolution). Europa torus (JNA imaging + in-situ) if near Europa Sensors on: all Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI ions)PEP
PEP_FLYBY_FAR_APPROACH_NIM_BACKGROUNDNIM background measurements part of switch on procedure. Moon environment monitoring: plasma moments, energetic particle spectra and pitch angle distributions (low time resolution). Europa torus (JNA imaging + in-situ) if near Europa Sensors on: all Corotation in JEI or JDC FoV Full pitch angle coverage (JDC, JEI, JoEE, JENI ions)PEP
RIME_EUROPA_FLYBYRIME flyby observations or observations without on-board processingRIME
UVS_IRR_SATObtain reflectance spectra of irregular satellitesUVS
UVS_IO_SCANSimilar to UVS_DISK_SCAN, but including extra emission lines e.g. from S and Cl. Also requires different spatial binning since Io is more distantUVS
UVS_SAT_TRANSITMeasure absorption of Jupiter airglow by satellite atmospheres as they transit Jupiter's disk, to constrain satellite atmospheric composition and variability. Pointing: nadir (Point slit N-S on Jupiter's disk and wait for moon to transit)UVS
UVS_EUR_SCAN_HIGH_RESSimilar to UVS_DISK_SCAN but higher resolution. pointing: start at -1.5 satellite radii from the satellite centre, scan in the direction perpendicular to the slit across the disk, ending at +1.5 satellite radii from the centreUVS
UVS_SAT_SURF_HPAs UVS_SAT_SURF_AP but using the high resolution port for improved spatial resolution in key surface regionsUVS
UVS_SAT_SURF_APPushbroom observations near flyby closest approach to investigate surface compositionUVS
MAJIS_STANDBYAfter switch-on of MAJIS, the Boot SW automatically starts, and performs the primary boot from the PROM (Init fugitive BSW mode). After processor modules initialization, the Boot software goes to STANDBY mode. By default, the ASW Image0 (stored in MRAM0 = ASM0) is autonomously loaded after a timeout of 30 seconds. MAJIS then enters into ASW init Mode and then into SAFE mode. In STANDBY Mode, all channels are off, and only DPU HK SID1 are received. MAJIS needs to be maintained in STANDBY mode using the TC(17,1) in the following cases : - upload (using service 6) of new ASW images (or CUSW, or firmware) into MRAM: FCP-MAJ-070 describes the maintenance process. - upload a new BROWSE Table FCP-MAJ-060 into MRAM - select ASW Image1 and then start ASW Image 1 instead of teh default ASW Image0. FCP-MAJ-062 - any other update of MRAM using service 6MAJIS
MAJIS_SERVICEMAJIS in service MODE (1 or 2 channels with FPE/FPA off + AUX w/o loads) SERVICE Mode as soon as one or two channels are switched ON (PE and AUX) From SERVICE, it is possible to return to SAFE mode or to change the status of MAJIS to DIAG2, DIAG3 or SCIENCE Duration: less than 10minMAJIS
MAJIS_SAT_LIMB_TRACKContinuous stare observation of a satellite limb during flyby using inertial pointing from satellite, dayside or nightside. Additional offsets within limb by means of internal pointing mirror. Scanning with MAJIS internal mirror. (--> ‘track limb’). Pointing: S/C limb tracking (‘track limb’) satellite otientation: SLIT tangent to the limb (slit not aligned with S/C motion) Duration: 60minMAJIS
MAJIS_SAT_LIMB_SCANFlyby observations of the satellite dayside or nightside limbs with vertical (N-S) slews across track, during yaw-steering phase. Satellite offsets to limb around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition or continuous slew pointing. Pointing: S/C slew scan centred a limb ( ‘Limb slew scan mode’). Satelliteo orientation: Slit tangent to the limb Duration: 60minMAJIS
MAJIS_SAT_DISK_SLEWFlyby observations of the satellite surface with vertical (N-S) slews across track, during yaw-steering phase. One or two slews (pole to pole) necessary to complete dayside coverage. Satellite offset around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition. Pointing: NADIR Pointing, YS, S/C scan (slew) with offset around Y (‘mosaic mode’ tbc). MAJIS slit perpendicular to the ground-track. Satellite orientation: MAJIS slit perpendicular to the ground-track Duration: 30 minMAJIS
MAJIS_SAT_DISK_SCANObservation of a distant satellite dayside or nightside surface. Satellite offset required for pointing then disk coverage is achieved using the internal pointing mirror scanning in the Y (N-S) direction. Pointing: NADIR-P with possible offset around Y, YS, MAJIS scan (‘Nadir scan’). Satellite orientation: MAJIS slit perpendicular to the ground-track Duration: 30minMAJIS
MAJIS_SAFEInitiated after ASW loading All channels are off and no PE HK are generated. Only ME HK are generated (only DPU ON) From SAFE it is possible 1) to switch OFF MAJIS, 2) to change the status of MAJIS to DIAG1 or SERVICE mode Duration: less than 5minMAJIS
MAJIS_Ring_OccultationObservation of a star occulted by the rings Scan windowing of 9 lines centered on the star (1 scan step = 1/3 MAJIS IFOV) possible Pointing: Inertial. For each occultation, transit of TBD min Satellite orientation: Inertial pointing of the S/C towards the position of the star to maintain MAJIS slit fixed on it. These occultation observations need to be consolidated in the future (star atlas, signal, Tint, S/C inertial capabilities). Scan mirror can be used to mitigate APE driftMAJIS
MAJIS_MainRING _PhaseCurveObservations of the main rings at various phase angles (N angles), one ansae (always the same), 20 vertical lines Pointing: S/C pointing ring plane at 1.8 R_J (extremity of main rings) Satellite orientation: OFF-NADIR, Ring plane while maintaining horizontal orientation of MAJIS slit, MAJIS scan mode activated for vertical sampling centered on the rings (20 lines) Duration: 200 sec for one observations at a given phase angleMAJIS
MAJIS_MainRING _LowPhaseObservations of the main rings (2 ansa), no tracking of azimuthal structure, 20 vertical lines pointing: OFF-NADIR, S/C pointing centered on the extremity of main rings, S/C depointing required for the two ansa Satellite orientation: Maintaining the MAJIS slit parallel to radial axis of main rings, MAJIS scan mode activated for vertical sampling centered on the rings (20 vertical lines) Duration:400 sec (excluding the S/C repointing to the other ansae)MAJIS
MAJIS_MainRING _HighPhaseObservations of the main rings (2 ansa) at high phase (forward scattering light), no tracking of azimuthal structure, no spatial binning to increase spatial resolution. Pointing: OFF-NADIR, S/C pointing centered on the extremity of main rings, S/C depointing required for the two ansa Satellite orientation: Maintaining the MAJIS slit parallel to radial axis of main rings, MAJIS scan mode activated for vertical sampling (20 vertical lines) centered on the rings Duration: 400 sec (excluding the S/C repointing to the other ansae)MAJIS
MAJIS_JUP_STELLAR_OCCMAJIS will acquire several “subcubes” (number depends upon planet's speed over the sky) around the (fixed) star position, at different angular distances between the star and the planet's limb during the ingress/egress. Each sub-cube spans over several lines (around 6, less if S/C capability allows it) to compensate for possible pointing inaccuracies. Bright far moons can be used instead of stars as sources to decrease the repetition integration (and therefore spatial sampling) as the orbital velocity ranges from ~ 5 km/s at apojove to ~ 13 km/s at perijove satellite orientation: LIMB TANGENT (preferred, otherwise VERTICAL), to minimize straylight duration: About 10min 66 sec (max) for each subcube. Time interval between sub-cubes as small as possible for better vertical coverage. Total number of cubes depends upon relative angular speed between star and limb.MAJIS
MAJIS_JUP_LIMB_SLEWThe scan the atmosphere of Jupiter over the limb up to 3000k is performed with a specific slew of the S/C Individual lines are largely overlapped to provide actual supersampling (x 10) in the spatial domain and allow sub-pixel resolution by deconvolution. Typically, we have cubes of about 300 lines by 50 pixels (~7500 km) Pointing type: OFF-NADIR (nominal pointing position over the Jupiter limb), continuous tracking (‘track tangent limb’) satellite orientation:LIMB TANGENT (MAJIS slit tangent to the limb), very slow s/c slew to get oversampling (10 lines corresponding to one pixel IFOV) Duration: 55 min for each cube (300 lines)MAJIS
MAJIS_JUP_LIMB_SCANThe MAJIS pointing mirror is used to scan the atmosphere of Jupiter over the limb up to 3000km. The scan mirror step of 1/3 MAJIS IFOV shall constrain the spatial sampling. Typically, we have cubes of about 20 lines by 50 pixels (~7500 km with 1 pixel=150 km) Pointing type: OFF-NADIR (nominal pointing position over the Jupiter limb), continuous tracking (‘track tangent limb’) satellite orientation: LIMB TANGENT (slit tangent to the limb) Duration: 4 min for each cube (20 lines)MAJIS
MAJIS_JUP_HIGH_FREQ_MONITORINGStudy of the evolution of atmospheric features at high temporal frequency. Tracking of features on the Jovian disc, on dayside as well as on nightside, with limited latitudinal coverage. MAJIS will acquire several “subcubes” with limited number of lines (about 40) using the scan mirror centered at one fixed position over the nominal Jupiter coordinate grid and reference surface. Planet rotation is compensated by continuous slew of the spacecraft (stop when acquiring). pointing type: OFF_NADIR, NYS, DISCONTINUOUS SLEW (‘track landmark scan’) satellite orientation: HORIZONTAL Duration: 80 sec for each sub-cube. Total duration about 5 h (1/2 of rotation period)MAJIS
MAJIS_JUP_EVENT_MONITORINGStudy of the evolution of unusual phenomena in Jupiter atmosphere, especially in their zonal evolution MAJIS will acquire several “subcubes” with limited number of lines (about 80) as follows: 1. a series of sub-cubes (from 1 to 4) is acquired with the scan mirror to get the coverage of a limited latitude region at all longitudes on the visible side of the planet. Satellite is re-pointed before acquiring each sub-cube 2. the series at previous point is repeated at fixed time intervals (in the order of 1 h, TBC) to monitor the temporal evolution. Pointing type: YS, Series of OFF-NADIR pointings (‘off-nadir scan mode’) satellite orientation: HORIZONTAL Duration: 160 sec for each sub-cube. Time between series defines actual temporal sampling and is variable (zero data rate here). Total duration about 5 h (1/2 of rotation period)MAJIS
MAJIS_JUP_DISK_SLEWObservations of Jupiter clouds and spectroscopy of minor gases. Scanning the instrument slit over Jovian disk (vertical direction) by means of the S/C slew. aims to cover the entire equatorial region (-30°:+30°) Pointing: OFF_NADIR, CONTINUOUS SLEW (« continuous S/C scan ») Satellite orientation: HORIZONTAL Duration: 20 min per cubeMAJIS
MAJIS_JUP_DISK_SCANObservations of Jupiter clouds and spectroscopy of minor gases. Scanning the instrument slit over Jovian disk (vertical direction) by means of internal pointing mirror, both dayside and nightside. Aims to cover the entire equatorial region (-30°:+30°) pointing type: YS, NADIR with fixed offset around Y (‘nadir offset MAJIS scan’) satellite orientation: HORIZONTAL Duration: 20min/cubeMAJIS
MAJIS_JUP_DISK_MOSAICA series of several MAJIS_JUP_DISK_SCAN or MAJIS_JUP_DISK_SLEW Spacecraft has to be re-pointed between individual acquisitions. POinting type: YS, NADIR with offset around Y (‘ nadir offset MAJIS scan’’) satellite orientation: HORIZONTAL (preferred) Duration: 3 x (scan-duration + turnaround Y duration). Scan duration from 20 to 40 min depending on the distance from Jupiter. Turnaround ~50 minMAJIS
MAJIS_JUP_AURORAL_MAPPINGObservations of Jupiter aurorae. Scanning the instrument slit over Jovian disc by means of internal pointing mirror, 200 lines. Pointing type: YS, NADIR with fixed offset around Y (‘nadir offset MAJIS scan’) satellte orientation: HORIZONTAL Duration: 37 min (200 lines <-> typical size of latitudes where polar ovals are observed)MAJIS
MAJIS_JovianRING_MOSAICMosaicking the 2 ring ansa from 90000 to 230000 km. 3 overlapping cubes of 20 vertical lines performed by the scanner (or S/Cslew if compatible with JANUS). This requires re-pointing between individual cubes. Pointing: OFF-NADIR, S/C pointing projected ring plane, S/C depointing required for the two ansa Satellite orientation: Maintaining the horizontal orientation of MAJIS slit, MAJIS scan mode activated for vertical sampling (20 vertical lines) centered on the rings, S/C depointing required for mosaicking each ansa (3 overlapping cubes to perform a radial mosaic of one ansa of the rings with radial distance from 90000 to 230000 km) Duration: 1200 sec (excluding the S/C repointings)MAJIS
MAJIS_ICUTo monitor the radiometric performances of MAJIS using VISNIR and IR sources Specifically, there are several goals A) tracking the evolution of the actual levels (before subtracting for CDS) in the digital dynamics (0-65535 at 100 kHz, 0-4095 at 1 MHz). Such an evolution could lead to adjust an offset which can be selected by TC (4 settings) so as to avoid reaching digital saturation for the read image before analog saturation. B) tracking the evolution of the dark current and cosmetics (new hot / dead pixels) C) tracking the evolution of the overall photometric response as a function of the signal (needed for the pipeline) Pointing: MAJIS scan mirror oriented towards the ICU (8.5°) Satellite orientation: Deep space Duration: 10minMAJIS
MAJIS_GEO5000During elliptical phase (~15 days before and after circular phase), mapping of selected areas (~40) at intermediate to high resolutions: 50 to <750 m/pix, bridging the gap in resolution between systematic mapping (MAJIS_GCO5000_global) and GCO ROIs (MAJIS_GCO500_HR). Pointing: YS, NADIR satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: from 35 min to 4H (Table 8 from budget report v2.1)MAJIS
MAJIS_GCO5000_REGIONALDuring circular phase (~120 days), regional mapping of the surface of Ganymede, bridging the gap in resolution between systematic global mapping and HR ROI's observed at GCO-500. 750 m/pix (no spatial binning), 300x300 km swaths Pointing type: YS, NADIR Satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: 6minMAJIS
MAJIS_GCO5000_LIMBLatitudinal scanning of the diurnal limb at 1 km at different latitudes; study of the variability of the exospheric processes (sputtering, photodissociation, sublimation). Observe polar (north/south) and equatorial latitudes ; perform long-term and high-temporal-resolution monitoring. Pointing: S/C limb tracking at locations where the slit is tangent to the limb Satellite orientation: Off-nadir orientation, Slit tangent to the limb Duration: 600secMAJIS
MAJIS_GCO5000_GLOBALSystematic mapping performed with cross-track binning by 4 during circular phase (~120 days) 3 km/pixel, 300x300 km swaths, spatial binning x 4. Pointing: YS, Nadir Satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: 4H per orbit (one cube: 6 min)MAJIS
MAJIS_GCO5000_AURORAObservations at auroral latitudes (30-35° N-S), at least in the dawn and dusk sides of Jovian magnetosphere. Mapping at spatial resolution of about 1 km using the MAJIS scan Pointing: S/C limb; no requirements on the slit orientation Saletllite orientation: Off-nadir orientationMAJIS
MAJIS_GCO500_LIMBMapping of selected areas on the dayside limb at resolutions of about 300 m at different latitudes (~30° in lat/lon from the nadir) to study variability of the exospheric processes (sputtering, photodissociation, sublimation). MAJIS scanning at different latitudes of the diurnal limb; a minimum of 3 (north,equat,south) x 2 (dawn, dusk) positions. Pointing: S/C limb tracking at locations where the slit is tangent to the limb satellite orientation: Off-nadir orientation, Slit tangent to the limb Duration: 600 sec per cubeMAJIS
MAJIS_GCO500_HRObservations in true push-broom of specific targets on the surface using motion compensation with the scanner 30 km cross-track x 8.7 km along-track @ 75 m/pixel 30 km cross-track x 17.4 km along-track @ 150 m/pixel (spatial binning x2) Pointing: Nadir pointing, NYS ( ‘motion compensation PB’) Satellite orientation: MAJIS slit perpendicular to the ground-track Duration: One acquisition: 60 sec; switch-on procedure: 10 minutes (TBC)MAJIS
MAJIS_FLYBY_MEDRESFlyby observations of the satellite surface with vertical (N-S) slews or MAJIS scan providing medium spatial resolution (e.g.resolution from 3 km to 1 km/pixel for Ganymede). Perform when the S/C moves slowly from approach YS phase to PB phase and during PB phase. Pointing: NYS, NADIR or OFF_NADIR after offset around Y ( ‘motion compensation PB’). Satellite orientation: MAJIS slit across track. Satellite offsets around Y (off-track pointing) axis or around X axis (for slew). Duration: a few minutes maximumMAJIS
MAJIS_FLYBY_HRHigh resolution pubshbroom flyby observations of satellite dayside surfaces bracketing closest approach. Satellite offsets around Y (off-track pointing) axis during or prior to observation allow near-nadir pointing of specific regions. Motion compensation or MAJIS scan is achieved using the MAJIS internal pointing mirror depending on the S/C speed and distance. Binning can be applied may be required near C/A. Pointing: NYS, NADIR or OFF_NADIR after offset around Y (‘motion compensation PB’). Satellite orientation: MAJIS slit across track, Satellite offsets around Y (off-track pointing) axis possible. Duration: 20 to 130 secMAJIS
MAJIS_BORESIGHT_ALIGNEMENTStar sequence for geometrical calibration. A star is initially pointed using the MAJIS boresight, then MAJIS is operated with the scan mechanism at high resolution (1/3 of IFOV) over 18 lines centered in the star. Then this operation is successively observed after 4 S/C repointings of 1.5° around X and Y. Pointing : inertial Satellite orientation: S/C pointing the star and MAJIS scans Duration: 18 to 180 sec per position (5 positions in total)+ stabilization time for repointing not taken into accountMAJIS
MAJIS_AmaltheaS/C pointing Amalthea preferentially near maximal elongation of (2.54 R_J), 2 hemispheres, MAJIS spatial windowing (16 rows) pointing: OFF-NADIR, S/C pointing Amalthea at 2.54 R_J while maintaining horizontal orientation of MAJIS slit satellite orientation: Maintaining horizontal orientation of MAJIS slit, MAJIS scan mode activated for vertical sampling centered on the satellite (10 lines) Duration: 100 sec for one hemisphereMAJIS
GALA_MONITORING_GANGALA will measure the time of flight between firing and receiving the returned laser signal during Ganymede phaseGALA
GALA_LR_FB_ALBEDOGALA will passively measure the reflectance of the illuminated hemisphere of the satellite during flyby nadir phase.GALA will operate in passive albedo mode (DiagRx)GALA
GALA_HR_TARGET_GANRegion of Interest Observation at GanymedeGALA
GALA_HR_FBHigh resolution data acquisition around FB closest approach. GALA will measure the time of flight between firing and receiving the returned laser signalGALA
GALA_IDLETransition from OFF to IDLE mode (and IDLE to OFF)GALA
3GM_USO_ONUSO is SWON and muted3GM
3GM_RADIO_OCCULTATIONSThe radio science experiment 3GM, with its dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. For instance, there are no occultations by Jupiter during the equatorial phase in 2030 and only 2 during the inclined orbital phase in 2031. The mission phase with the greatest number of Jupiter occultations (26) is the transfer to the Ganymede mission phase in 2032. The current planning tour offers a fairly regular sampling of latitudes between 54° S and 17° N and a rather global longitudinal coverage. USO unmuted, HAA in NOMINAL SCIENCE. Note that 2 other options exist for torus occultations but are not (yet) defined in the database3GM
3GM_HAA_STANDBYHAA in STANDBY mode3GM
3GM_GRAVITY_FOR_EPHEMERIDESKaT ON during communication windows 3GM
3GM_GRAVITYKaT and HAA for gravity science3GM
3GM_BISTATIC_RADARcharacterization of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted3GM
3GM HAA CALIBRATIONHAA in NOMINAL SCIENCE Duration: 50min3GM
SWI_MECHANISMCheck of mechanism response to commands. Integration time on the CTS is 10 seconds.SWI
SWI_POINTING_CCHDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CCH 1 & 2. Integration time on the CCH is 0.1s.SWI
SWI_POINTING_ACSDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2. Integration time on the ACS is 1s.SWI
SWI_POINTING_CTSDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2. Integration time on the CTS is 1.5s.SWI
SWI_POINTING_ACS_CCH: Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2 and the CCH 1 & 2.Integration time on the ACS and CCH are 1s and 0.1s, respectively.SWI
SWI_POINTING_CTS_CCHDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2 and the CCH 1 & 2. Integration time on the CTS and CCH are 1.5s and 0.1s, respectively.SWI
SWI_ALLAN_TOTAL_CCHAllan variance characterization of the CCH 1 & 2 by integrating on the cold sky. Integration time is 0.1 s.SWI
SWI_ALLAN_TOTAL_ACSAllan variance characterization of the ACS 1 & 2 by integrating on the cold sky. Integration time is 1 sSWI
SWI_ALLAN_TOTAL_CTSAllan variance characterization of the CTS 1 & 2 by integrating on the cold sky. Integration time is 1.5 s.SWI
SWI_ALLAN_ACS_FSAllan variance characterization of the ACS 1 & 2 by integrating on the cold sky. Integration time is 1 s. Frequency-switch calibration method.SWI

1 2 3 251 observation definitions