Select observation definition to view

Filter

By Payload

MAJ_GEO5000During elliptical phase (~15 days before and after circular phase), mapping of selected areas (~40) at intermediate to high resolutions: 50 to <750 m/pix, bridging the gap in resolution between systematic mapping (MAJIS_GCO5000_global) and GCO ROIs (MAJIS_GCO500_HR). Pointing: YS, NADIR satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: from 35 min to 4H (Table 8 from budget report v2.1)MAJIS
MAJ_GCO5000_REGIONALDuring circular phase (~120 days), regional mapping of the surface of Ganymede, bridging the gap in resolution between systematic global mapping and HR ROI's observed at GCO-500. 750 m/pix (no spatial binning), 300x300 km swaths Pointing type: YS, NADIR Satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: 6minMAJIS
MAJ_GCO5000_LIMBLatitudinal scanning of the diurnal limb at 1 km at different latitudes; study of the variability of the exospheric processes (sputtering, photodissociation, sublimation). Observe polar (north/south) and equatorial latitudes ; perform long-term and high-temporal-resolution monitoring. Pointing: S/C limb tracking at locations where the slit is tangent to the limb Satellite orientation: Off-nadir orientation, Slit tangent to the limb Duration: 600secMAJIS
MAJ_GCO5000_GLOBALSystematic mapping performed with cross-track binning by 4 during circular phase (~120 days) 3 km/pixel, 300x300 km swaths, spatial binning x 4. Pointing: YS, Nadir Satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: 4H per orbit (one cube: 6 min)MAJIS
MAJ_GCO5000_AURORAObservations at auroral latitudes (30-35° N-S), at least in the dawn and dusk sides of Jovian magnetosphere. Mapping at spatial resolution of about 1 km using the MAJIS scan Pointing: S/C limb; no requirements on the slit orientation Saletllite orientation: Off-nadir orientationMAJIS
MAJ_GCO500_LIMBMapping of selected areas on the dayside limb at resolutions of about 300 m at different latitudes (~30° in lat/lon from the nadir) to study variability of the exospheric processes (sputtering, photodissociation, sublimation). MAJIS scanning at different latitudes of the diurnal limb; a minimum of 3 (north,equat,south) x 2 (dawn, dusk) positions. Pointing: S/C limb tracking at locations where the slit is tangent to the limb satellite orientation: Off-nadir orientation, Slit tangent to the limb Duration: 600 sec per cubeMAJIS
MAJ_GCO500_HRObservations in true push-broom of specific targets on the surface using motion compensation with the scanner 30 km cross-track x 8.7 km along-track @ 75 m/pixel 30 km cross-track x 17.4 km along-track @ 150 m/pixel (spatial binning x2) Pointing: Nadir pointing, NYS ( ‘motion compensation PB’) Satellite orientation: MAJIS slit perpendicular to the ground-track Duration: One acquisition: 60 sec; switch-on procedure: 10 minutes (TBC)MAJIS
MAJ_FLYBY_MEDRESFlyby observations of the satellite surface with vertical (N-S) slews or MAJIS scan providing medium spatial resolution (e.g.resolution from 3 km to 1 km/pixel for Ganymede). Perform when the S/C moves slowly from approach YS phase to PB phase and during PB phase. Pointing: NYS, NADIR or OFF_NADIR after offset around Y ( ‘motion compensation PB’). Satellite orientation: MAJIS slit across track. Satellite offsets around Y (off-track pointing) axis or around X axis (for slew). Duration: a few minutes maximumMAJIS
MAJ_FLYBY_HRHigh resolution pubshbroom flyby observations of satellite dayside surfaces bracketing closest approach. Satellite offsets around Y (off-track pointing) axis during or prior to observation allow near-nadir pointing of specific regions. Motion compensation or MAJIS scan is achieved using the MAJIS internal pointing mirror depending on the S/C speed and distance. Binning can be applied may be required near C/A. Pointing: NYS, NADIR or OFF_NADIR after offset around Y (‘motion compensation PB’). Satellite orientation: MAJIS slit across track, Satellite offsets around Y (off-track pointing) axis possible. Duration: 20 to 130 secMAJIS
MAJ_BORESIGHT_ALIGNEMENTStar sequence for geometrical calibration. A star is initially pointed using the MAJIS boresight, then MAJIS is operated with the scan mechanism at high resolution (1/3 of IFOV) over 18 lines centered in the star. Then this operation is successively observed after 4 S/C repointings of 1.5° around X and Y. Pointing : inertial Satellite orientation: S/C pointing the star and MAJIS scans Duration: 18 to 180 sec per position (5 positions in total)+ stabilization time for repointing not taken into accountMAJIS
MAJ_AmaltheaS/C pointing Amalthea preferentially near maximal elongation of (2.54 R_J), 2 hemispheres, MAJIS spatial windowing (16 rows) pointing: OFF-NADIR, S/C pointing Amalthea at 2.54 R_J while maintaining horizontal orientation of MAJIS slit satellite orientation: Maintaining horizontal orientation of MAJIS slit, MAJIS scan mode activated for vertical sampling centered on the satellite (10 lines) Duration: 100 sec for one hemisphereMAJIS
GAL_MONITORING_GANGALA will measure the time of flight between firing and receiving the returned laser signal during Ganymede phaseGALA
GAL_LR_FB_ALBEDOGALA will passively measure the reflectance of the illuminated hemisphere of the satellite during flyby nadir phase.GALA will operate in passive albedo mode (DiagRx)GALA
GAL_HR_TARGET_GANRegion of Interest Observation at GanymedeGALA
GAL_HR_FBHigh resolution data acquisition around FB closest approach. GALA will measure the time of flight between firing and receiving the returned laser signalGALA
GAL_IDLETransition from OFF to IDLE mode (and IDLE to OFF)GALA
3GM_USO_ONUSO is SWON and muted3GM
3GM_RADIO_OCCULTATIONSThe radio science experiment 3GM, with its dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. USO unmuted, HAA in NOMINAL SCIENCE. Note that 2 other options exist for torus occultations but are not (yet) defined in the database3GM
3GM_HAA_STANDBYHAA in STANDBY mode3GM
3GM_GRAVITY_FOR_EPHEMERIDESKaT ON during communication windows3GM
3GM_GRAVITYKaT and HAA for gravity science3GM
3GM_BISTATIC_RADARcharacterization of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted3GM
3GM_HAA_CALIBRATIONHAA in CALIBRATION mode Duration: 50min3GM
SWI_MECHANISMCheck of mechanism response to commands. Integration time on the CTS is 10 seconds.SWI
SWI_POINTING_CCHDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CCH 1 & 2. Integration time on the CCH is 0.1s.SWI
SWI_POINTING_ACSDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2. Integration time on the ACS is 1s.SWI
SWI_POINTING_CTSDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2. Integration time on the CTS is 1.5s.SWI
SWI_POINTING_ACS_CCH: Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2 and the CCH 1 & 2.Integration time on the ACS and CCH are 1s and 0.1s, respectively.SWI
SWI_POINTING_CTS_CCHDetermination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2 and the CCH 1 & 2. Integration time on the CTS and CCH are 1.5s and 0.1s, respectively.SWI
SWI_ALLAN_TOTAL_CCHAllan variance characterization of the CCH 1 & 2 by integrating on the cold sky. Integration time is 0.1 s.SWI
SWI_ALLAN_TOTAL_ACSAllan variance characterization of the ACS 1 & 2 by integrating on the cold sky. Integration time is 1 sSWI
SWI_ALLAN_TOTAL_CTSAllan variance characterization of the CTS 1 & 2 by integrating on the cold sky. Integration time is 1.5 s.SWI
SWI_ALLAN_ACS_FSAllan variance characterization of the ACS 1 & 2 by integrating on the cold sky. Integration time is 1 s. Frequency-switch calibration method.SWI
SWI_ALLAN_CTS_FSAllan variance characterization of the CTS 1 & 2 by integrating on the cold sky. Integration time is 1.5 s. Frequency-switch calibration method.SWI
SWI_TSYS_CCH_V1Spectral scan to measure the system temperature spectra of the 2 bands with the CCH 1 & 2 by observing the hot load and cold sky. A single execution can cover up to 16 tunings.SWI
SWI_TSYS_ACS_V1Spectral scan to measure the system temperature spectra of the 2 bands with the ACS 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1 second. A single execution can cover up to 16 tunings.SWI
SWI_TSYS_ACS_CCHSpectral scan to measure the system temperature spectra of the 2 bands with the ACS & CCH 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1 second. A single execution can cover up to 15 tunings.SWI
SWI_TSYS_CTS_V1Spectral scan to measure the system temperature spectra of the 2 bands with the CTS 1 & 2 by observing the hot load and cold sky. Integration time on CTS is 2 seconds. A single execution can cover up to 15 tunings.SWI
SWI_UNLOCKLaunch lock release (on antenna & rocker mechanisms) is allowed only in this mode.SWI
SWI_DIAGNOSTICDiagnostic activity is allowed in this mode, including activation and control of sub-units, and service 6.SWI
SWI_2D_MAP_OTFSimilar to SWI 2D MAP PS, but using an on-the-fly recording sequence, i.e. the OFF position per map row is only observed once.SWI
PEP_OFFAll sensors off, only survival heaters onPEP
MAG_BURST_FIB_FOBBurst observation mode without scalar sensorJMAG
MAG_DL_FOBThis observation is introduced to characterise JMAG operations during downlink times where power resources from the SC may be more limited, and where SC attitude is driven by operational constraints Only MAGOBS is operating.JMAG
MAG_CONTINOP_FIB_FOBJ-MAG will measure the magnetic field in normal mode (at a rate of 32 vectors/s) continuously with SCA not operatingJMAG
RPW_INITRPWI Transient mode while instrument is initialising after being powered onRPWI
RPW_STANDBYRPWI Safe mode where the instrument can survive indefinitely and where memory patch, dump and check commands are acceptedRPWI
UVS_SAT_SOL_OCCUVS solar port stares at Sun as the satellite occults it.UVS
UVS_SAT_STELL_OCCUVS airglow port stares at a fixed RA and DEC as the satellite occults the star.UVS
JAN_SCI_SLEWObservations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C made with a continuous slew. The raster is done with continuous slew approach: images are acquired while the S/C is slewing; slew rate shall be adapted with the instrument angular sampling and the integration time. To be used while in J orbit or during FBs (out from CA phase)JANUS
JAN_SCI_RASTERObservations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C. The raster is done with a stop-and-go approach: the S/C maintain an inertial pointing allowing images acquisitions, then perform a slew to the new position and repeat the cycle till the (m x n) raster is completed. To be used while in J orbit or during FBs (out from CA phase)JANUS
JAN_SCI_PBObservations of single or multiple frames with a pointing offset wrt to nominal S/C pointing (e.g., wrt nadir-looking while in G orbit, during FB or while in Jupiter orbit)JANUS
JAN_CONFIGNo observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are ON) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF.JANUS
JAN_IDLENo observations, but instrument ON for thermal stabilization before observations or between two observation phases that are too close to switch the instrument OFF.JANUS
JAN_OFFNo observations, instrument OFF.JANUS
RPW_In_situ_burst_Radar_mode_3The RPWI In-situ_burst + Radio_mode_3 mode: - Makes continuous In-situ_burst mode measurement. In addtion to in-situ_slow modes, In-situ_burst mode adds continuous measurements of electric and magnetic fields at higher cadence (763 smpl/s) as well as more frequent snapshots at higher frequencies (MF - 50 ksmpl/s and HF - 312 ksmpl/s); - Radio mode TBDRPWI
RPW_In_situ_burst_Radio_FullThe RPWI In-situ_burst + Radio_Full mode: - Makes continuous In-situ_burst mode measurement. In addtion to in-situ_slow modes, In-situ_burst mode adds continuous measurements of electric and magnetic fields at higher cadence (763 smpl/s) as well as more frequent snapshots at higher frequencies (MF - 50 ksmpl/s and HF - 312 ksmpl/s); - Makes detailed radio emissions from Jupiter as well as moons (Ganymede, Callisto, Europa). Will also support RIME measurements, giving the background natural radio emissions. Monitor the radio emission spectrum as well as polarization.RPWI
RPW_In_situ_burst_Radio_burstThe RPWI In-situ_burst + Radio_burst mode: - Makes continuous In-situ_burst mode measurement. In addtion to in-situ_slow modes, In-situ_burst mode adds continuous measurements of electric and magnetic fields at higher cadence (763 smpl/s) as well as more frequent snapshots at higher frequencies (MF - 50 ksmpl/s and HF - 312 ksmpl/s) - Makes full plasma wave measurements and high-time resolution monitoring up to 1.6MHz as well as cover the low frequency and DC electric field and density measurements.RPWI
RPW_In_situ_slow_Radar_mode_3The RPWI In-situ_slow + Radio_mode_3 mode: - Makes continuous In-situ_slow mode measurement, the basic in-situ modes; - Radio mode TBDRPWI
RPW_In_situ_slow_Radio_burstThe RPWI In-situ_slow + Radio_burst mode: - Makes continuous In-situ_slow mode measurement, the basic in-situ modes; - Makes full plasma wave measurements and high-time resolution monitoring up to 1.6MHz as well as cover the low frequency and DC electric field and density measurements.RPWI
RPW_In_situ_slow_Radio_FullThe RPWI In-situ_slow + Radio_Full mode: - Makes continuous In-situ_slow mode measurement, the basic in-situ modes; - Makes detailed radio emissions from Jupiter as well as moons (Ganymede, Callisto, Europa). Will also support RIME measurements, giving the background natural radio emissions. Monitor the radio emission spectrum as well as polarization.RPWI
RPW_In_situ_normal_Radar_mode_3The RPWI In-situ_normal + Radio_mode_3 mode: - Makes continuous In-situ_normal mode measurement. In addtion to in-situ_slows modes, In-situ_normal mode adds short durations snapshots if electric and magnetic fields at higher frequencies (LF – 763 smpl/s, MF - 50 ksmpl/s and HF - 312 ksmpl/s - Radio mode TBDRPWI
RPW_In_situ_normal_Radio_FullThe RPWI In-situ_normal + Radio_Full mode: - Makes continuous In-situ_normal mode measurement. In addtion to in-situ modes, In-situ_normal mode adds short durations snapshots if electric and magnetic fields at higher frequencies (LF – 763 smpl/s, MF - 50 ksmpl/s and HF - 312 ksmpl/s - Makes detailed radio emissions from Jupiter as well as moons (Ganymede, Callisto, Europa). Will also support RIME measurements, giving the background natural radio emissions. Monitor the radio emission spectrum as well as polarization.RPWI
RPW_In_situ_normal_Radio_burstThe RPWI In-situ_normal + Radio_burst mode: - Makes continuous In-situ_normal mode measurement. In addtion to in-situ modes, In-situ_normal mode adds short durations snapshots if electric and magnetic fields at higher frequencies (LF – 763 smpl/s, MF - 50 ksmpl/s and HF - 312 ksmpl/s - Makes full plasma wave measurements and high-time resolution monitoring up to 1.6MHz as well as cover the low frequency and DC electric field and density measurements.RPWI
RPW_OBSOLETE_In_situ_low_Radio_burstThe RPWI In-situ_low + Radio_burst mode: - Makes continuous In-situ_low mode measurement, the lowest in-situ possible power and TM, which implements only the Mutual Impedance sweeps and DC electric field measurements; - Makes full plasma wave measurements and high-time resolution monitoring up to 1.6MHz as well as cover the low frequency and DC electric field and density measurements.RPWI
RPW_OBSOLETE_In_situ_low_Radar_mode_3The RPWI In-situ_low + Radio_mode_3 mode: - Makes continuous In-situ_low mode measurement, the lowest in-situ possible power and TM, which implements only the Mutual Impedance sweeps and DC electric field measurements; - Radio TBDRPWI
RPW_In_situ_low_Radio_FullThe RPWI In-situ_low + Radio_Full mode - Makes continuous In-situ_low mode, the lowest in-situ possible power and TM, which implements only the Mutual Impedance sweeps and DC electric field measurements; - Makes detailed radio emissions from Jupiter as well as moons (Ganymede, Callisto, Europa). Will also support RIME measurements, giving the background natural radio emissions. Monitor the radio emission spectrum as well as polarization.RPWI
SWI_SAFEMode used for USO stabilization prior to warm-up. As it takes several weeks to stabilize the USO, the latter should remain ON all the time in the science phase. Mode into which the instruments switches autonomously in case of an instrument anomaly is detected or if no more science operations are in the queue. Mode to be used during downlink. Only housekeeping telemetry is generated in this mode.SWI
SWI_MOON_NADIR_STARE_FS_V1Investigation of Galilean Moons’ surface properties and atmospheric composition, temperature, and winds, and surface properties. This mode can also be used to characterize surface polarization by pointing 45 off-nadir, after rotating the S/C by 90 around its nadir axis. It can also serve for solar occultation experiments to observe a weak molecular line in the atmosphere of Jupiter, a Galilean Moon, or the Europa torus. Flyby: Two CTS spectra are recorded for 30 seconds over 210 channels (16 bits coding). GCO: Two CTS spectra are recorded for 10 seconds over 130 channels (16 bits coding). In both cases, two CCH measurements (20 bits coding) are recorded for 0.1 sec, so that they are separated by maximum 1/2 beam at 1200 GHz. Solar occultation: Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second. Position-switch calibration method.SWI
SWI_MOON_LIMB_SCAN_FS_V1Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink.SWI
SWI_MOON_LIMB_STARE_FS_V1Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink.SWI
SWI_JUP_LIMB_RASTER_FS_V1Same as SWI JUP LIMB RASTER PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time on-source. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink.SWI
SWI_JUP_LIMB_RASTER_PS_V1Investigation of Jupiter’s stratospheric winds, temperature and composition, targeting one (or more) molecular line(s) at the planetary limb with a 3  resolution in latitude. The investigation of Jupiter’s stratospheric dynamics (winds) requires measuring the Doppler shifts induced by zonal winds on strong lines. The observations require a very high signalto- noise ratio ( 100) and a very high spectral resolution (100kHz). Similar requirements for the investigation of Jupiter’s stratospheric chemical inventory and temperature as a function of latitude. At each limb position, a short  10-point across-limb scan of the continuum emission is performed with the CCH to derive a posteriori the instrument pointing. Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second. Position-switch calibration method.SWI
SWI_JUP_LIMB_STARE_FS_V1Same as SWI JUP LIMB STARE PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time on-source. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink.SWI
SWI_JUP_LIMB_STARE_PS_V1Investigation of Jupiter’s stratospheric composition and temperature by targeting one (or more) molecular line(s) at the planetary limb. The retrieval of vertical profiles require a very high signal-to-noise ratio ( 100) and a very high spectral resolution (100kHz). A coarser spectral resolution (i.e. 500kHz) is sufficient for detections. This mode is nominally meant for deep integrations and implies numerous repetitions. A short  10-point across-limb scan of the continuum emission is performed with the CCH to derive a posteriori the instrument pointing. Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second. Position-switch calibration method.SWI
SWI_2D_MAP_PS_V1This is a multi-purpose mode that can be used on any science target for any 2D mapping, and meridional or zonal rasters. This mode will also be used for calibration purposes (e.g. pointing). The number of rows and columns and the stepsize of the raster map is adaptable to the target angular size. Jupiter: Investigation of the global and regional stratospheric composition and temperature of Jupiter, and pointing calibration. For 2D maps, meridional scans and zonal scans, two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding). Moon monitoring: Investigation of the spatial distribution of Galilean moons atmospheric species (+ monitoring), and calibration. Two CTS spectra are recorded for 60 seconds over 210 channels (16 bits coding). Flybys: Mapping of Galilean Moons’ surface properties and atmospheric composition, temperature, and winds. Two CTS spectra are recorded for 30 seconds over 210 channels (16 bits coding). GCO: (1) Investigation of Ganymede’s atmospheric composition, temperature, and winds, and surface properties by scanning from limb to limb with the along-track mechanism across the ground-track using the antenna mechanism ( 72 ). Two CTS spectra are recorded for 10 seconds over 130 channels (16 bits coding). (2) Tomographic investigation of Ganymede’s atmospheric and surface composition, temperature, and winds by scanning along-track from 30km to +30km of the nadir axis with 9 steps, using the rocker mechanism ( 4.3 ), and with 1.5 sec integration time for two CTS spectra over 130 channels (16 bits coding). In all cases, two CCH measurements (20 bits coding) are recorded for 0.1 second. During GCO, this implies that two CCH measurements are separated by 1/2 beam at 1200 GHz. Position-switch calibration method (the OFF position is observed after each ON of the map is observed).SWI
SWI_5POINT_CROSS_PS_V1Investigation of the Jovian and Galilean moon atmospheric composition, and Galilean surface properties by means of rough raster mapping. The stepsize is such that the opposite ends of the cross are separated by the size of the target in the given direction. For Jupiter, two CTS spectra are recorded every 60 seconds over 10000 channels (16 bits coding). For moon monitoring, two CTS spectra are recorded every 30 seconds over 210 channels (16 bits coding). For both cases, and in parallel, two CCH measurements (20 bits coding) are recorded every 0.1 second. Position-switch calibration method.SWI
SWI_5POINT_CROSS_FS_V1Same as SWI 5POINT CROSS PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time onsource. For Jupiter, two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding). For moon monitoring, two CTS spectra are recorded for 30 seconds over 210 channels (16 bits coding). For both cases, and in parallel, two CCH measurements (20 bits coding) are recorded for 0.1 second. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink. Frequency-switch calibration method for CTS data.SWI
PEP_IDLEPEP in IDLE mode PEP
MAG_DLThis observation is introduced to characterize JMAG operations during downlink times where power resources from the SC may be more limited, and where SC attitude is driven by operational constraints. Only MAGOBS and MAGIBS are operating.JMAG
RPW_DLRPWI observation during downlink windowsRPWI
UVS_JUP_DEFAULTdefault pointing to be inserted at the start and end of the timelineUVS
PEP_SENSORS_STBYPEP in standbyPEP
PEP_JUPITER_IN_SITU_IMAGING_LOW_1Low power in-situ & ENA imaging mode (e.g. downlink, non-prime/low priority science segments). PEPLo Sensors ON: JDC_LP, JEI (4 sectors), JNA PEPHi Sensors ON: Option 1: JENI_Combo, JoEE. Option 2: JENI_ENA, JoEEPEP
PEP_JUPITER_IN_SITU_IMAGING_BURST_1Burst in-situ mode, magnetosphere. CA of moon flybys with JNA/JENI imaging (if NIM off) PEPLo Sensors ON: JDC, JEI, JNA PEPHi Sensors ON: Option 1: JENI_Combo, JoEE. Option 2: JENI_ENA, JoEEPEP
PEP_JUPITER_IN_SITU_IMAGING_NOMINAL_1Regular magnetosphere in-situ & ENA imaging monitoring mode. Can work on flybys, if NIM off. PEPLo Sensors ON: JDC_LP, JEI (8 sectors), JNA PEPHi Sensors ON: Option 1: JENI_Combo, JoEE. Option 2: JENI_ENA, JoEEPEP
PEP_JUPITER_EQUATORIAL_TORUS_CROSSINGAll sensors, except JNA, on in medium to low rates. Prime objective is for NIM to measure torus composition in-situ. Other sensors to measure indicators that can be used to constrain the densities. Applies also to Jupiter High Inclination for now.PEP
PEP_JUPITER_IN_SITU_NOMINAL_1Regular magnetosphere in-situ monitoring mode. Can work on flybys, if NIM off. PEPLo Sensors ON: JDC, JEI PEPHi Sensors ON: JENI_Ion, JoEEPEP
RIM_CALLISTO_FLYBYRIME flyby observations or observations without on-board processing.RIME
SWI_MOON_LIMB_SCAN_PS_V1Investigation of Galilean Moons’ atmospheric composition, temperature, and winds. Flyby: The atmospheric limb is rapidly scanned to achieve 5km vertical resolution. Two CTS spectra are recorded for 1.5 sec over 210 channels (16 bits coding). GCO: The atmospheric limb is scanned up and down rapidly with 10 km altitude steps and with 1.5 sec integration time for two CTS spectra over 130 channels (16 bits coding). Position-switch calibration method.SWI
SWI_MOON_LIMB_STARE_PS_V1Investigation of Galilean Moons’ atmospheric composition, temperature, and winds). Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. Position-switch calibration method.SWI
SWI_MOON_NADIR_STARE_PS_V1Investigation of Galilean Moons’ surface properties and atmospheric composition, temperature, and winds, and surface properties. This mode can also be used to characterize surface polarization by pointing 45 off-nadir, after rotating the S/C by 90 around its nadir axis. It can also serve for solar occultation experiments to observe a weak molecular line in the atmosphere of Jupiter, a Galilean Moon, or the Europa torus. Flyby: Two CTS spectra are recorded for 30 seconds over 210 channels (16 bits coding). GCO: Two CTS spectra are recorded for 10 seconds over 130 channels (16 bits coding). In both cases, two CCH measurements (20 bits coding) are recorded for 0.1 sec, so that they are separated by maximum 1/2 beam at 1200 GHz. Solar occultation: Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second. Position-switch calibration method.SWI
SWI_2D_MAP_FS_V1Same as SWI 2D MAP PS, except a frequency-switch calibration mode is used instead of position-switch. It enables spending  100% of the integration time on-source. If the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink.SWI
SWI_NADIR_STARE_PSInvestigation of the atmospheric composition (and temperature) of Jupiter and the Galilean moons. This mode is nominally meant for deep integrations and requires numerous repetitions (e.g. monitoring of the moons). Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding). Position-switch calibration method.SWI
SWI_WARMUPWarm-up mode.SWI
SWI_STANDBYOnly the instrument DPU will be switched on and be able to accept instrument commands. Only housekeeping telemetry is generated in this mode.SWI
SWI_OFFAll instrument subsystems including the DPU will be switched off. Consequently there will be no housekeeping data and no telemetry. The instrument will be in this mode during launch and cruise phase, except during calibration campaigns (e.g. planet flybys).SWI
MAG_CALROLLCampaign of spacecraft rolls to allow calibration of J-MAG magnetic field measurements. J-MAG will take data in gradiometer mode continuously while the spacecraft rolls about two principal axes, in regions where the Jovian magnetic field is >100 nT. Spacecraft rolls about two principal axes. 3 rolls of 360° about first axis at 0.5 rev/hr, then 3 rolls about the second axis (also at 0.5 rev/hr). The spacecraft rotation axes must always make an angle with the ambient magnetic field between 20° and 160°.JMAG
MAG_BURSTOperation of J-MAG in burst mode (measurement at rate of 128 vectors/s) starting 10 minutes before and ending 10 minutes after a predicted crossing of a thin current sheet in Ganymedes magnetosphere (magnetopause/magnetotail current sheet).JMAG
MAG_CONTINOPmeasure the magnetic field in normal mode (at a rate of 32 vectors/s) continuouslyJMAG

1 2 3 214 observation definitions