Select observation definition to view

Filter

By Payload

UVS_SAT_LIMB_SCAN_HPSimilar to disc scan observations, but holding the pointing relative to the limb during flyby sequences.UVS
UVS_SAT_LIMB_SCAN_APSimilar to disc scan observations, but holding the pointing relative to the limb during flyby sequences.UVS
UVS_SAT_LIMB_STARE_HPSearch for faint atmospheric emissions by building signal to noise through long integrations.UVS
UVS_SAT_LIMB_STARE_APSearch for faint atmospheric emissions by building signal to noise through long integrations.UVS
UVS_SAT_DISK_SCAN_HPConstruct spectral image cubes of multiple atmospheric emission line features (up to 1024 selectable spectral bins with a minimum of 3 key emissions: H Lya, OI 130.4 nm, OI 135.6 nm), with repeated scans to investigate highly time-variable auroral dynamics.UVS
UVS_SAT_DISK_SCAN_APConstruct spectral image cubes of multiple atmospheric emission line features (up to 1024 selectable spectral bins with a minimum of 3 key emissions: H Lya, OI 130.4 nm, OI 135.6 nm), with repeated scans to investigate highly time-variable auroral dynamics.UVS
UVS_NC_STARECharacterize the Io/Europa neutral clouds in the immediate vicinity of the satellite. Center satellite in slit. Align the slit with the satellite orbital planeUVS
UVS_IO_TORUS_STAREMonitor emissions from the Io torus. Slit aligned parallel with Jupiter's equator.UVS
UVS_GCO_HISTOGRAM_003Similar to observation 001 but with increased spectral resolution to achieve < 2 nm resolution between 100 and 200 nm as specified in SciRDUVS
UVS_JUP_ROLL_SCANPoint to nadir. Rotate about nadir so that we scan a circle (or a fraction of a circle - e.g. covering the auroral regions) over Jupiter's disk. Rotation rate ~0.1 degree per secondUVS
UVS_IRR_SATObtain reflectance spectra of irregular satellitesUVS
UVS_IO_SCANSimilar to UVS_DISK_SCAN, but including extra emission lines e.g. from S and Cl. Also requires different spatial binning since Io is more distantUVS
UVS_SAT_TRANSITMeasure absorption of Jupiter airglow by satellite atmospheres as they transit Jupiter's disk, to constrain satellite atmospheric composition and variability. Pointing: nadir (Point slit N-S on Jupiter's disk and wait for moon to transit)UVS
UVS_EUR_SCAN_HIGH_RES_OBSOLETESimilar to UVS_DISK_SCAN but higher resolution. pointing: start at -1.5 satellite radii from the satellite centre, scan in the direction perpendicular to the slit across the disk, ending at +1.5 satellite radii from the centreUVS
UVS_SAT_SURF_HPAs UVS_SAT_SURF_AP but using the high resolution port for improved spatial resolution in key surface regionsUVS
UVS_SAT_SURF_APPushbroom observations near flyby closest approach to investigate surface compositionUVS
UVS_SAT_SOL_OCCUVS solar port stares at Sun as the satellite occults it.UVS
UVS_SAT_STELL_OCCUVS airglow port stares at a fixed RA and DEC as the satellite occults the star.UVS
UVS_JUP_DEFAULTdefault pointing to be inserted at the start and end of the timelineUVS
UVS_IO_TORUS_SCANMap emissions from the Io torus. Slit aligned parallel with Jupiter's rotation pole, scanned E-W across the torusUVS
UVS_JUP_SP_SOL_OCCThe large solar disc and the substantial distance from Jupiter mean that this will not provide the same vertical resolution as stellar occultations, but are useful for measurements of minor/trace constituents due to high S/N. This uses a fixed scan through the Solar Port (SP) at a selected RA and DEC, holding the pointing for an extended amount of time. Note: Here histograms, but pixellist mode possible.UVS
UVS_JUP_HP_STELL_OCCFor bright stars, use the High spatial resolution port (HP) for higher contrast of star signal to Jupiter background signal. Used also as calibration reference standards.UVS
UVS_JUP_AP_STELL_OCCFor moderately bright stars. Stars serve as a point source to provide good vertical resolution on Jupiter’s atmosphere. The field of view is pointed to a given RA and DEC and pointing held for an extended amount of time. The majority of the data can be omitted except for that of the star on the detector, so these can be done within a good data budget. Full spectral coverage. Note: Here, “moderate, histogram mode”, but pixellist or histogram mode low or high possible.UVS
UVS_JUP_HP_LIMB_SCANSame as UVS_JUP_AP_LIMB_SCAN but through the HP portUVS
UVS_JUP_AP_LIMB_SCANMonitoring auroral and airglow emissions in limb scans which requires a continuous S/C motion to point to limb and scan over planetary limb, using the AP port. Observation performed in pixel list mode to reach a time resolution of 0.001 s.UVS
UVS_JUP_HP_FEATURE_SCANTo assess the evolution of discrete phenomena (e.g., H Ly-alpha bulge, plumes, auroral features,…) using the HP port and pixellist mode.UVS
UVS_JUP_HP_SCAN_MAPSame as UVS_JUP_AP_SCAN_MAP but for High spatial resolution Port (HP). Scan the UVS slit in the cross slit direction across a region (e.g., auroral (N or S)) or entire disk using the Airglow (AP) port, scan at a constant rate across Jupiter to produce a map. Observation performed in pixel list mode to reach a time resolution of 0.001 s.UVS
UVS_JUP_AP_SCAN_MAPScan the UVS slit in the cross slit direction across a region (e.g., auroral (N or S)) or entire disk using the Airglow (AP) port, scan at a constant rate across Jupiter to produce a map. Observation performed in pixel list mode to reach a time resolution of 0.001 s.UVS
UVS_JUP_HP_AIRGLOW_STARESame as UVS_JUP_AP_AIRGLOW_STARE but for High spatial resolution Port (HP). Monitoring auroral and airglow emissions in stare mode using the Airglow Port (AP). Slit held along Jupiter' s North/South and on the central meridian, while Jupiter rotates below S/C creating a map. Histogram mode.UVS
UVS_JUP_AP_AIRGLOW_STAREMonitoring auroral and airglow emissions in stare mode using the Airglow Port (AP). Slit held along Jupiter' s North/South and on the central meridian, while Jupiter rotates below S/C creating a map. Histogram mode.UVS
UVS_GCO_HPHigh spatial resolution observations of Ganymede's aurora to look for small scale featuresUVS
UVS_GCO_HISTOGRAM_002Similar to observation 001 but with Increased time sampling to capture auroral morphology and variabilityUVS
UVS_GCO_HISTOGRAM_001Monitoring auroral emissions and surface reflectance during GCO. Limited spectral resolution.UVS

33 observation definitions