JA_PE52 | | Working Group 4 |
JA_PE53 | | Working Group 4 |
JA_PE54 | | Working Group 4 |
JA_PE55 | | Working Group 4 |
JA_PE56 | | Working Group 4 |
JA_PE57 | | Working Group 4 |
JA_PE58 | | Working Group 4 |
JA_PE59 | | Working Group 4 |
JA_PE6 | | Working Group 4 |
JA_PE60 | JA_PE60 | Working Group 4 |
JA_PE61 | JA_PE61 | Working Group 4 |
JA_PE62 | JA_PE62 | Working Group 4 |
JA_PE63 | JA_PE63 | Working Group 4 |
JA_PE64 | JA_PE64 | Working Group 4 |
JA_PE65 | JA_PE65 | Working Group 4 |
JA_PE66 | JA_PE66 | Working Group 4 |
JA_PE67 | JA_PE67 | Working Group 4 |
JA_PE68 | JA_PE68 | Working Group 4 |
JA_PE69 | JA_PE69 | Working Group 4 |
JA_PE7 | | Working Group 4 |
JA_PE8 | | Working Group 4 |
JA_PE9 | | Working Group 4 |
JA_PH | Jupiter Atmosphere prime segment at min-90-max phase.
pointing target is Jupiter although pointing type is TBD (limb, etc) | Working Group 4 |
JM_CB | | Working Group 3 |
JM_ENA | | Working Group 3 |
JM_GM | Jupiter Magnetosphere global monitoring.
Large pointing flexibility, constraints mainly driven by PEP | Working Group 3 |
JM_INCL | | Working Group 3 |
JM_PE_OBS | Jupiter Magnetosphere perijove segments containing link to observations database | Working Group 3 |
JM_PE13 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE15 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE17 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE19 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE21 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE23 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE25 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE27 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE29 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE31 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE33 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE35 | | Working Group 3 |
JMAG_CALROLL | 5 calibration roll needed by JMAG. 2 as soon as possible after JOI. 3 during phase 5: one at the start of phase 5, the last 2 as late as possible before GOI | WGX |
JMAG_DESIGNER_OBSERVATION | | JMAG |
JUPITER_CB | In situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments. | Working Group 3 |
JUPITER_CPS | In situ Jupiter current/plasma sheet observation | Working Group 3 |
JUPITER_ENA | Imaging of Jupiter's magnetosphere in energetic neutral atoms (ENAs).Maximize pitch angle coverage with PEP JEI,JDC,JoEE, JENI (ion mode)
a) JENI has a broad FoV and captures Jupiter and the Io/Europa torus and magnetosphere at most times. No special pointing design required for JENI besides requiring an approximate nadir pointing (considerable offsets can still be acceptable)
b) JNA disk-shaped/slit FoV has a slight offset from the XZ spacecraft plane, meaning that during nadir pointing, it images preferentially the northern or southern extension of the Europa/Io torus, whereas Jupiter may be in the edge or outside of the FoV, especially at large distances. Scans (small rotations around Sc-X) or periods with stable, small offset of the SC-xz plane from Nadir can help to better image stronger emissions from the equatorial torus | Working Group 3 |
JUPITER_FD_NAV_FB | | GENERIC |
JUPITER_FD_TCM | | GENERIC |
JUPITER_FD_WOL | Flight dynamics wheel off-loading slot, outside of Flyby preparation and recuperation | GENERIC |
JUPITER_FD_WOL_FB | In the last week before the fly-by a WOL slot shall be combined with the
TCM slot at To– 3 days (i.e. a single 3-hr slot). Another 2-hour WOL slot shall be reserved at To + 12 hours. | GENERIC |
JUPITER_GM | In situ mapping of global configuration and monitoring dynamics of the Jovian magnetospheric environment.
corotation should be in the FoV of PEP/JDC or PEP/JEI.
Conditions for coverage:
◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
◦ Boresight angle of JDC or JEI less than ˜90 deg
Conditions for ideal coverage:
◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
◦ Boresight angle less than ˜75 deg (JEI) or 70 deg (JDC): corotation away from the FoV edge
JDC is preferred for monitoring corotation, over JEI, when possible. | Working Group 3 |
JUPITER_INCLINED_AURORA | | Working Group 4 |
JUPITER_MONITORING | | Working Group 4 |
JUPITER_NULL | In situ Jupiter magnetic null search | Working Group 3 |
JUPITER_PDT | In situ Jupiter particle distribution transition region observation.
Maximize pitch angle coverage for PEP/JEI, JDC,JoEE, JENI (ion mode) | Working Group 3 |
JUPITER_PERIJOVE | Jupiter observations | Working Group 4 |
JUPITER_PHASE_090 | | Working Group 4 |
JUPITER_PHASE_120_DEC | | Working Group 4 |
JUPITER_PHASE_120_INC | | Working Group 4 |
JUPITER_PHASE_135_DEC | | Working Group 4 |
JUPITER_PHASE_135_INC | | Working Group 4 |
JUPITER_PHASE_150_DEC | | Working Group 4 |
JUPITER_PHASE_150_INC | | Working Group 4 |
JUPITER_PHASE_165_DEC | | Working Group 4 |
JUPITER_PHASE_165_INC | | Working Group 4 |
JUPITER_PHASE_MAX | | Working Group 4 |
JUPITER_PHASE_MIN | | Working Group 4 |
JUPITER_TAIL | In situ search for signatures of local magnetic reconnection in the Jovian magnetotail | Working Group 3 |
OPNAV_CAL | OPNAV_CAL
Optical navigation window, targeting Callisto.
Pointing is Callisto tracking | GENERIC |
OPNAV_EUR | OPNAV_EUR
Optical navigation window, targeting Europa.
Pointing is Europa tracking (MPAD) | GENERIC |
OPNAV_GAN | OPNAV_GAN
Optical navigation window, targeting Ganymede.
Pointing is Ganymede tracking | GENERIC |
PEPHI_DESIGNER_OBSERVATION | | PEPHI |
PEPHI_PRIME_OBSERVATION | | PEPHI |
PEPLO_DESIGNER_OBSERVATION | | PEPLO |
PERIJOVE_DAYSIDE | | Working Group 4 |
PERIJOVE_NIGHTSIDE | | Working Group 4 |
PERIJOVE_TERMINATOR | | Working Group 4 |
PR | | WGX |
RIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | RIME |
RING_HP | Ring high phase | Working Group 2 |
RING_LP | Ring low phase | Working Group 2 |
RING_PHASECURV_10 | Opportunity implementation in geopipeline
SC distance to Jupiter larger than 8e5 km
SC elevation above the rings lower than 0.5 deg
Only one Ansae tested for phase conditions - value must be between 10 deg and 20 deg | Working Group 2 |
RING_PHASECURV_100 | | Working Group 2 |
RING_PHASECURV_110 | | Working Group 2 |
RING_PHASECURV_120 | | Working Group 2 |
RING_PHASECURV_130 | | Working Group 2 |
RING_PHASECURV_140 | | Working Group 2 |
RING_PHASECURV_150 | | Working Group 2 |
RING_PHASECURV_160 | | Working Group 2 |
RING_PHASECURV_170 | | Working Group 2 |
RING_PHASECURV_20 | | Working Group 2 |
RING_PHASECURV_30 | | Working Group 2 |
RING_PHASECURV_40 | | Working Group 2 |
RING_PHASECURV_5 | Opportunity implementation in geopipeline
SC distance to Jupiter larger than 8e5 km
SC elevation above the rings lower than 0.5 deg
Only one Ansae tested for phase conditions - value must be between 5 deg and 10 deg | Working Group 2 |
RING_PHASECURV_50 | | Working Group 2 |
RING_PHASECURV_60 | | Working Group 2 |
RING_PHASECURV_70 | | Working Group 2 |
RING_PHASECURV_80 | | Working Group 2 |
RING_PHASECURV_90 | | Working Group 2 |
RINGMATTER | RINGMATTER. Observations of the main rings and the gossamer rings, imaging the ring ansae from moderately large elevation.
The moderatly large elevation will reveal azimuthal structure in the rings and the presence of clumps at the resolution limit of the imaging. | Working Group 2 |
RINGSPIRAL_HP | RINGSPIRAL_HP (high phase, Janus def) | Working Group 2 |