Select segment definition to view

JA_PE1test 3_2Working Group 4
JA_PE10 Working Group 4
JA_PE11 Working Group 4
JA_PE12 Working Group 4
JA_PE14 Working Group 4
JA_PE16 Working Group 4
JA_PE18 Working Group 4
JA_PE2 Working Group 4
JA_PE20 Working Group 4
JA_PE22 Working Group 4
JA_PE24 Working Group 4
JA_PE26 Working Group 4
JA_PE28 Working Group 4
JA_PE3 Working Group 4
JA_PE30 Working Group 4
JA_PE32 Working Group 4
JA_PE34 Working Group 4
JA_PE36 Working Group 4
JA_PE37 Working Group 4
JA_PE38 Working Group 4
JA_PE39 Working Group 4
JA_PE4 Working Group 4
JA_PE40 Working Group 4
JA_PE41 Working Group 4
JA_PE42 Working Group 4
JA_PE43 Working Group 4
JA_PE44 Working Group 4
JA_PE45 Working Group 4
JA_PE46 Working Group 4
JA_PE47 Working Group 4
JA_PE48 Working Group 4
JA_PE49 Working Group 4
JA_PE5 Working Group 4
JA_PE50 Working Group 4
JA_PE51 Working Group 4
JA_PE52 Working Group 4
JA_PE53 Working Group 4
JA_PE54 Working Group 4
JA_PE55 Working Group 4
JA_PE56 Working Group 4
JA_PE57 Working Group 4
JA_PE58 Working Group 4
JA_PE59 Working Group 4
JA_PE6 Working Group 4
JA_PE7 Working Group 4
JA_PE8 Working Group 4
JA_PE9 Working Group 4
JA_PH Working Group 4
JM_CB Working Group 3
JM_ENA Working Group 3
JM_GM Working Group 3
JM_INCL Working Group 3
JM_PEassuming: JMAG: 2.31 kbps RPWI: 1.7*2.167 kbps PEP: 2 kpbs (ball park number; discussion with Gabriella at WG3 F2F meeting in Sept 2018)Working Group 3
JM_PE_OBSJupiter Magnetosphere perijove segments containing link to observations databaseWorking Group 3
JM_PE13share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE15share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE17share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE19share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE21share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE23share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE25share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE27share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE29share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE31share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE33share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE35 Working Group 3
JMAG_CALROLL5 calibration roll needed by JMAG. 2 as soon as possible after JOI. 3 during phase 5: one at the start of phase 5, the last 2 as late as possible before GOIWGX
JUPITER_CBIn situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments.Working Group 3
JUPITER_CPSIn situ Jupiter current/plasma sheet observationWorking Group 3
JUPITER_ENAImaging of Jupiter's magnetosphere in energetic neutral atoms (ENAs).Maximize pitch angle coverage with PEP JEI,JDC,JoEE, JENI (ion mode) a) JENI has a broad FoV and captures Jupiter and the Io/Europa torus and magnetosphere at most times. No special pointing design required for JENI besides requiring an approximate nadir pointing (considerable offsets can still be acceptable) b) JNA disk-shaped/slit FoV has a slight offset from the XZ spacecraft plane, meaning that during nadir pointing, it images preferentially the northern or southern extension of the Europa/Io torus, whereas Jupiter may be in the edge or outside of the FoV, especially at large distances. Scans (small rotations around Sc-X) or periods with stable, small offset of the SC-xz plane from Nadir can help to better image stronger emissions from the equatorial torusWorking Group 3
JUPITER_FD_EPHEM_GAN GENERIC
JUPITER_FD_NAV_FB GENERIC
JUPITER_FD_TCM GENERIC
JUPITER_FD_WOLFlight dynamics wheel off-loading slot, outside of Flyby preparation and recuperationGENERIC
JUPITER_FD_WOL_FBIn the last week before the fly-by a WOL slot shall be combined with the TCM slot at To– 3 days (i.e. a single 3-hr slot). Another 2-hour WOL slot shall be reserved at To + 12 hours.GENERIC
JUPITER_GMIn situ mapping of global configuration and monitoring dynamics of the Jovian magnetospheric environment. corotation should be in the FoV of PEP/JDC or PEP/JEI. Conditions for coverage: ◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation ◦ Boresight angle of JDC or JEI less than ˜90 deg Conditions for ideal coverage: ◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation ◦ Boresight angle less than ˜75 deg (JEI) or 70 deg (JDC): corotation away from the FoV edge JDC is preferred for monitoring corotation, over JEI, when possible.Working Group 3
JUPITER_INCLINED_AURORA Working Group 4
JUPITER_MONITORING Working Group 4
JUPITER_NULLIn situ Jupiter magnetic null searchWorking Group 3
JUPITER_PDTIn situ Jupiter particle distribution transition region observation. Maximize pitch angle coverage for PEP/JEI, JDC,JoEE, JENI (ion mode)Working Group 3
JUPITER_PERIJOVEJupiter observationsWorking Group 4
JUPITER_PHASE_090 Working Group 4
JUPITER_PHASE_120_DEC Working Group 4
JUPITER_PHASE_120_INC Working Group 4
JUPITER_PHASE_135_DEC Working Group 4
JUPITER_PHASE_135_INC Working Group 4
JUPITER_PHASE_150_DEC Working Group 4
JUPITER_PHASE_150_INC Working Group 4
JUPITER_PHASE_165_DEC Working Group 4
JUPITER_PHASE_165_INC Working Group 4
JUPITER_PHASE_MAX Working Group 4
JUPITER_PHASE_MIN Working Group 4
JUPITER_TAILIn situ search for signatures of local magnetic reconnection in the Jovian magnetotailWorking Group 3
OPNAV_CALOPNAV_CALGENERIC
OPNAV_EUROPNAV_EURGENERIC
OPNAV_GANOPNAV_GANGENERIC
PERIJOVE_DAYSIDE Working Group 4
PERIJOVE_NIGHTSIDE Working Group 4
PERIJOVE_TERMINATOR Working Group 4
PR WGX

1 2 3 4 333 segment definitions