| JM_PE33 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE31 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE29 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE27 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE25 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE23 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE21 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE19 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE17 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE15 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE13 | share prime high lat PJ between WG3 and WG4 | Working Group 3 | 
|---|
| JM_PE_P4 | Perijoves with WG3 prime (--> 20/09/18: modified (discussion with OW). assuming ~2 times what is produced in G4-G5 scenario (~6.5-7 Gb). Corresponds roughly to 19kbps, copied from JA_INCL)
RS rate assumes no D/L suspension (case 2) | Working Group 3 | 
|---|
| JM_PE_OBS | Jupiter Magnetosphere perijove segments containing link to observations database | Working Group 3 | 
|---|
| JM_GM | Jupiter Magnetosphere global monitoring.
Large pointing flexibility, constraints mainly driven by PEP | Working Group 3 | 
|---|
| JUPITER_TAIL | In situ search for signatures of local magnetic reconnection in the Jovian magnetotail | Working Group 3 | 
|---|
| JUPITER_GM | In situ mapping of global configuration and monitoring dynamics of the Jovian magnetospheric environment.
corotation should be in the FoV of PEP/JDC or PEP/JEI. 
Conditions for coverage:
	◦	Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
	◦	Boresight angle of JDC or JEI less than ˜90 deg
Conditions for ideal coverage:
	◦	Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
	◦	Boresight angle less than ˜75 deg (JEI) or 70 deg (JDC): corotation away from the FoV edge
JDC is preferred for monitoring corotation, over JEI, when possible. | Working Group 3 | 
|---|
| GANYMEDE_GM | In situ mapping of global configuration and monitoring dynamics of Ganymede's magnetospheric environment | Working Group 3 | 
|---|
| JUPITER_PDT | In situ Jupiter particle distribution transition region observation.
Maximize pitch angle coverage for PEP/JEI, JDC,JoEE, JENI (ion mode) | Working Group 3 | 
|---|
| JUPITER_NULL | In situ Jupiter magnetic null search | Working Group 3 | 
|---|
| JUPITER_CPS | In situ Jupiter current/plasma sheet observation | Working Group 3 | 
|---|
| JUPITER_CB | In situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments. | Working Group 3 | 
|---|
| GANYMEDE_WAKE | In situ Ganymede wake observation | Working Group 3 | 
|---|
| EUROPA_WAKE | In situ Europa wake observation | Working Group 3 | 
|---|
| EUROPA_TOR_IS | In situ Europa torus observation | Working Group 3 | 
|---|
| CALLISTO_WAKE | In situ Callisto wake observation | Working Group 3 | 
|---|
| JUPITER_ENA | Imaging of Jupiter's magnetosphere in energetic neutral atoms (ENAs).Maximize pitch angle coverage with PEP JEI,JDC,JoEE, JENI (ion mode)
a) 	JENI has a broad FoV and captures Jupiter and the Io/Europa torus and magnetosphere at most times. No special pointing design required for JENI besides requiring an approximate nadir pointing (considerable offsets can still be acceptable)
b) JNA disk-shaped/slit FoV has a slight offset from the XZ spacecraft plane, meaning that during nadir pointing, it images preferentially the northern or southern extension of the Europa/Io torus, whereas Jupiter may be in the edge or outside of the FoV, especially at large distances. Scans (small rotations around Sc-X) or periods with stable, small offset of the SC-xz plane from Nadir can help to better image stronger emissions from the equatorial torus | Working Group 3 | 
|---|
| GANYMEDE_IONO | GANYMEDE_IONO
In situ Ganymede ionosphere observation | Working Group 3 | 
|---|
| GANYMEDE_ENA | Far approach energetic neutral atom imaging of Ganymede | Working Group 3 | 
|---|
| EUROPA_ENA | Far approach energetic neutral atom imaging of Europa | Working Group 3 | 
|---|
| CALLISTO_ENA | Far approach energetic neutral atom imaging of Callisto | Working Group 3 | 
|---|
| EUROPA_IONO_IS | EUROPA_IONO_IS
In situ Europa ionosphere observation | Working Group 3 | 
|---|
| CALLISTO_IONO | CALLISTO_IONO
In situ Callisto ionosphere observation | Working Group 3 | 
|---|
| JM_PE | assuming:
JMAG: 2.31 kbps
RPWI: 1.7*2.167 kbps
PEP: 2 kpbs (ball park number; discussion with Gabriella at WG3 F2F meeting in Sept 2018) | Working Group 3 | 
|---|
| G_IS_4G4 |  | Working Group 3 | 
|---|
| JM_PE35 |  | Working Group 3 | 
|---|
| TOR_RS |  | Working Group 3 | 
|---|
| JM_INCL |  | Working Group 3 | 
|---|
| JM_PE_P4_noDL |  | Working Group 3 | 
|---|
| JM_CB |  | Working Group 3 | 
|---|
| JM_ENA |  | Working Group 3 | 
|---|
| G_IS |  | Working Group 3 | 
|---|
| E_IS |  | Working Group 3 | 
|---|
| C_IS |  | Working Group 3 | 
|---|
| CALLISTO_FLYBY_RPWI_IONO_AJS |  | Working Group 3 | 
|---|
| EUROPA_FLYBY_RPWI_IONO_AJS |  | Working Group 3 | 
|---|
| GANYMEDE_FLYBY_RPWI_IONO_AJS |  | Working Group 3 | 
|---|