| MAG_CONTINOP_FIB_FOB | J-MAG will measure the magnetic field in normal mode (at a rate of 32 vectors/s) continuously with SCA not operating | JMAG |
| MAG_CONTINOP_FIB_FOB_LIGHT_ONLY | JMAG mode (FIB FOB Light Only), this mode ensures that while FIB and FOB are collecting science the Scalar sensor also has power to its laser but is not collecting science data. This helps to protect the fibres from radiation damage, necessary for the Europa phase due to its radiation environment. | JMAG |
| MAJ_JUP_AURORAL_MAPPING | Jupiter Auroral Mapping
Scanning of the instrument slit over Jovian polar regions, from polar limb to approx. 50°N/S latitudes, with exposure times optimized for weak auroral emissions.
Note: similar to MAJIS_JUP_DISK_SCAN but for high latitudes during high inclination phase
Duration: typically, 40 min (200 lines <-> typical size of latitudes where polar ovals are observed) | MAJIS |
| MAJ_GCO5000_LIMB_SCAN | Latitudinal scanning of the diurnal limb at 1 km at different latitudes; study of the variability of the exospheric processes (sputtering, photodissociation, sublimation). Observe polar (north/south) and equatorial latitudes ; perform long-term and high-temporal-resolution monitoring.
Pointing: S/C limb tracking at locations where the slit is tangent to the limb
Satellite orientation: Off-nadir orientation, Slit tangent to the limb
Duration: 600sec | MAJIS |
| SWI_UNLOCK | Launch lock release (on antenna & rocker mechanisms) is allowed only in this mode. | SWI |
| PEL_JUPITER_IN_SITU_IMAGING_NOMINAL_3 | Legacy description from PEP_FLYBY_CLOSEST_APPROACH:
Local moon-magnetosphere interaction observation: plasma moments, energetic particle spectra and pitch angle distributions (high time resolution for short term variations)
Europa imaging (JNA). Dense exosphere (NIM)
Sensors on: all
Corotation in JEI or JDC FoV
Full pitch angle coverage (JDC, JEI, JoEE, JENI)
Moon in JNA FoV
Angle of NIM_NEUION_S0 from JUICE_EUROPA_RAM or JUICE_GANYMEDE_RAM or JUICE_CALLISTO_RAM velocity less than 5 deg at CA
Solar panel rotation angle (SADM) SADM > 74° or
SADM < -74°
Moon in JNA FoV | PEPLO |
| PEL_JUPITER_IN_SITU_IMAGING_LOW_1 | Low power in-situ & ENA imaging mode (e.g. downlink, non-prime/low priority science segments).
PEPLo Sensors ON: JDC_LP, JEI (4 sectors), JNA | PEPLO |
| PEL_JUPITER_IN_SITU_LOW_1 | Low power in-situ mode (e.g. downlink, non-prime/low priority science sgments)
PEPLo Sensors ON: JDC_LP, JEI (8 sectors) | PEPLO |
| MAJ_SERVICE | MAJIS in service MODE (1 or 2 channels with FPE/FPA off + AUX w/o loads)
SERVICE Mode as soon as one or two channels are switched ON (PE and AUX)
From SERVICE, it is possible to return to SAFE mode or to change the status of MAJIS to DIAG2, DIAG3 or SCIENCE
Duration: less than a few mins
20.2 W max, See table Table 1 (depend on the thermal transient effects at first order) Evolution to be partly checked with active check-outs during cruise. | MAJIS |
| MAJ_JUP_STELLAR_OCC | MAJIS will acquire several “subcubes” (number depends upon planet's speed over the sky) around the (fixed) star position, at different angular distances between the star and the planet's limb during the ingress/egress.
Each sub-cube spans over several lines (around 6, less if S/C capability allows it) to compensate for possible pointing inaccuracies.
Bright far moons can be used instead of stars as sources to decrease the repetition integration (and therefore spatial sampling) as the orbital velocity ranges from ~ 5 km/s at apojove to ~ 13 km/s at perijove
satellite orientation: LIMB TANGENT (preferred, otherwise VERTICAL), to minimize straylight
duration:
About 10min
66 sec (max) for each subcube. Time interval between sub-cubes as small as possible for better vertical coverage. Total number of cubes depends upon relative angular speed between star and limb. | MAJIS |
| UVS_IO_TORUS_SCAN | Map emissions from the Io torus. Slit aligned parallel with Jupiter's equator, scanned N-S across one ansa of the torus, then move in four steps to the other ansa, repeating the N-S motion each time | UVS |
| UVS_IO_TORUS_SCAN | Map emissions from the Io torus. Slit aligned parallel with Jupiter's rotation pole, scanned E-W across the torus | UVS |
| MAJ_GCO500_LIMB_SCAN | Mapping of selected areas on the dayside limb at resolutions of about 300 m at different latitudes (~30° in lat/lon from the nadir) to study variability of the exospheric processes (sputtering, photodissociation, sublimation). MAJIS scanning at different latitudes of the diurnal limb; a minimum of 3 (north,equat,south) x 2 (dawn, dusk) positions.
Pointing: S/C limb tracking at locations where the slit is tangent to the limb
satellite orientation: Off-nadir orientation, Slit tangent to the limb
Duration: 600 sec per cube | MAJIS |
| UVS_SAT_TRANSIT | Measure absorption of Jupiter airglow by satellite atmospheres as they transit Jupiter's disk, to constrain satellite atmospheric composition and variability.
Pointing: nadir (Point slit N-S on Jupiter's disk and wait for moon to transit) | UVS |
| MAG_CONTINOP | measure the magnetic field in normal mode (at a rate of 32 vectors/s) continuously | JMAG |
| SWI_SAFE | Mode used for USO stabilization prior to warm-up. As it takes several weeks to stabilize the USO, the latter should remain ON all the time in the science phase. Mode into which the instruments switches autonomously in case of an instrument anomaly is detected or if no more science operations are in the queue. Mode to be used during downlink. Only housekeeping telemetry is generated in this mode. | SWI |
| PEL_GANYMEDE_IN_SITU_LOW_7 | Mode with only NIM on (ion) from PEP-Lo. Required for avoiding switching on/off NIM once per day during downlinks. Good for long surveys of the ionosphere.
PEPLo Sensors ON: NIM ion on, only | PEPLO |
| PEL_GANYMEDE_IN_SITU_LOW_6 | Mode with only NIM on (neutral) from PEP-Lo. Required for avoiding switching on/off NIM once per day during downlinks. Good for long surveys of the exosphere.
PEPLo Sensors ON: NIM neutral on, only | PEPLO |
| UVS_IO_TORUS_STARE | Monitor emissions from the Io torus. Slit aligned parallel with Jupiter's equator. | UVS |
| UVS_JUP_AP_LIMB_SCAN | Monitoring auroral and airglow emissions in limb scans which requires a continuous S/C motion to point to limb and scan over planetary limb, using the AP port. Observation performed in pixel list mode to reach a time resolution of 0.001 s. | UVS |
| UVS_JUP_AP_AIRGLOW_STARE | Monitoring auroral and airglow emissions in stare mode using the Airglow Port (AP). Slit held along Jupiter' s North/South and on the central meridian, while Jupiter rotates below S/C creating a map. Histogram mode. | UVS |
| UVS_GCO_HISTOGRAM_001 | Monitoring auroral emissions and surface reflectance during GCO. Limited spectral resolution. | UVS |
| JAN_IDLE | No observations, but instrument ON for thermal stabilization before observations or between two observation phases that are too close to switch the instrument OFF. | JANUS |
| JAN_CONFIG_ALLOFF | No observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are OFF) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF. | JANUS |
| JAN_CONFIG_ALLON | No observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are ON) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF. | JANUS |
| JAN_OFF | No observations, instrument OFF. | JANUS |
| UVS_DECONTAMINATION | Not a true observation, but included so other instruments are aware that our heaters are on | UVS |
| MAJ_SAT_DISK_SCAN | Observation of a distant satellite dayside or nightside surface. Satellite offset required for pointing then disk coverage is achieved using the internal pointing mirror scanning in the Y (N-S) direction.
Pointing: NADIR-P with possible offset around Y, YS, MAJIS scan (‘Nadir scan’).
Satellite orientation: MAJIS slit perpendicular to the ground-track
Duration: 30min | MAJIS |
| MAJ_JUP_RING_OCCULTATION | Observation of a star occulted by the rings
Scan windowing of 9 lines centered on the star (1 scan step = 1/3 MAJIS IFOV) possible
Pointing: Inertial. For each occultation, transit of TBD min
Satellite orientation: Inertial pointing of the S/C towards the position of the star to maintain MAJIS slit fixed on it. These occultation observations need to be consolidated in the future (star atlas, signal, Tint, S/C inertial capabilities). Scan mirror can be used to mitigate APE drift | MAJIS |
| MAJ_GCO5000_AURORA | Observations at auroral latitudes (30-35° N-S), at least in the dawn and dusk sides of Jovian magnetosphere.
Mapping at spatial resolution of about 1 km using the MAJIS scan
Pointing: S/C limb; no requirements on the slit orientation
Saletllite orientation: Off-nadir orientation | MAJIS |
| MAJ_GCO500_HR | Observations in true push-broom of specific targets on the surface using motion compensation with the scanner
30 km cross-track x 8.7 km along-track @ 75 m/pixel
30 km cross-track x 17.4 km along-track @ 150 m/pixel (spatial binning x2)
Pointing: Nadir pointing, NYS ( ‘motion compensation PB’)
Satellite orientation: MAJIS slit perpendicular to the ground-track
Duration: One acquisition: 60 sec; switch-on procedure: 10 minutes (TBC) | MAJIS |
| MAJ_JUP_DISK_SCAN | Observations of Jupiter clouds and spectroscopy of minor gases.
Scanning the instrument slit over Jovian disk (vertical direction) by means of internal pointing mirror, both dayside and nightside. Aims to cover at least the entire equatorial region (-30°:+30°) during low inclination phases and the polar regions during high inclination phase.
Duration: typically 20min/cube, max 30 min/cube, assuming 2.1 s per line | MAJIS |
| MAJ_JUP_DISK_SLEW | Observations of Jupiter clouds and spectroscopy of minor gases.
Scanning the instrument slit over Jovian disk (vertical direction) by means of the S/C slew. aims to cover the entire equatorial region (-30°:+30°)
Pointing: OFF_NADIR, CONTINUOUS SLEW (« continuous S/C scan »)
Satellite orientation: HORIZONTAL
Duration: 20 min per cube | MAJIS |
| JAN_SCI_SLEW | Observations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C made with a continuous slew. The raster is done with continuous slew approach: images are acquired while the S/C is slewing; slew rate shall be adapted with the instrument angular sampling and the integration time. To be used while in J orbit or during FBs (out from CA phase) | JANUS |
| JAN_SCI_RASTER | Observations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C. The raster is done with a stop-and-go approach: the S/C maintain an inertial pointing allowing images acquisitions, then perform a slew to the new position and repeat the cycle till the (m x n) raster is completed. To be used while in J orbit or during FBs (out from CA phase).
Children observation defined during scenarios:
│ ├── JAN_SCI_RASTER_AMALTHEA_HIGH_RES
│ ├── JAN_SCI_RASTER_AURORAS
│ ├── JAN_SCI_RASTER_FEATURES
│ ├── JAN_SCI_RASTER_GLOBAL_MAP
│ ├── JAN_SCI_RASTER_HIGH_RES_MAP_JOINED_SET_003_S007_01_S00P01.def
│ ├── JAN_SCI_RASTER_HIGH_RES_MAP
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_1_S007_01_S00P01.def (name non compliant)
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_2_S007_01_S00P01.def (name non compliant)
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_S007_01_S00P01.def
│ ├── JAN_SCI_RASTER_LIGHTING_MAP
│ ├── JAN_SCI_RASTER_POLAR_SOUTH | JANUS |
| JAN_SCI_PB | Observations of single or multiple frames with a pointing offset wrt to nominal S/C pointing (e.g., wrt nadir-looking while in G orbit, during FB or while in Jupiter orbit) | JANUS |
| MAJ_JUP_RING | Observations of the main rings (2 ansa) at a given phase (backscattering to forward scattering light), no tracking of azimuthal structure, no spatial binning to increase spatial resolution | MAJIS |
| UVS_IRR_SAT | Obtain reflectance spectra of irregular satellites | UVS |
| SWI_STANDBY | Only the instrument DPU will be switched on and be able to accept instrument commands. Only housekeeping telemetry is generated in this mode. | SWI |
| MAG_BURST | Operation of J-MAG in burst mode (measurement at rate of 128 vectors/s) starting 10 minutes before and ending 10 minutes after a predicted crossing of a thin current sheet in Ganymedes magnetosphere (magnetopause/magnetotail current sheet). | JMAG |
| GAL_LR_FB_ALBEDO | Passive albedo operations for flybys – before or after closest approach | GALA |
| RIM_GANYMEDE_N4 | Passive Radar Acquisitions on Jovian side of Ganymede. | RIME |
| PEH_OFF_1 | PEP-Hi off
* Macro: 0 | PEPHI |
| SWI_SCIENCE | Place holder:
one of the ASW mode, where the science script will be run ( i.e. from SWI_TSYS_CTS down to SWI_MOON_NADIR_STARE_FS) during the mission | SWI |
| UVS_JUP_ROLL_SCAN | Point to nadir. Rotate about nadir so that we scan a circle (or a fraction of a circle - e.g. covering the auroral regions) over Jupiter's disk. Rotation rate ~0.1 degree per second | UVS |
| GAL_FULLSCIENCE_FLYBY | Primary full science for flyby operations during closest approach. | GALA |
| GAL_MONITORING_GAN | Primary science mode for Ganymede operations | GALA |
| UVS_SAT_SURF_AP | Pushbroom observations near flyby closest approach to investigate surface composition | UVS |
| PEL_GANYMEDE_IN_SITU_NOMINAL_3 | Regular in-situ mode, ganymede phase. CA of moon flybys later in the mission (higher power consumption). Good for high quality, extended survey in charged particles. NIM, JNA off.
PEPLo Sensors ON: JDC, JEI on, JNA & NIM off | PEPLO |
| PEL_GANYMEDE_IN_SITU_NOMINAL_2 | Regular in-situ mode, ganymede phase. CA of moon flybys later in the mission (higher power consumption). Good for high quality, extended survey. All instruments on, NIM in ion mode (response of ionosphere to charged particles).
PEPLo Sensors ON: All sensors ON, NIM, JNA ion mode | PEPLO |
| PEL_GANYMEDE_IN_SITU_NOMINAL_1 | Regular in-situ mode, ganymede phase. CA of moon flybys later in the mission (higher power consumption). Good for high quality, extended survey. All instruments on, NIM in neutral mode (response of exosphere to charged particles).
PEPLo Sensors ON: All sensors ON, NIM neutral mode, JNA ion mode | PEPLO |
| PEL_JUPITER_IN_SITU_IMAGING_NOMINAL_1 | Regular magnetosphere in-situ & ENA imaging monitoring mode. Can work on flybys, if NIM off.
PEPLo Sensors ON: JDC_LP, JEI (8 sectors), JNA | PEPLO |
| PEL_JUPITER_IN_SITU_NOMINAL_1 | Regular magnetosphere in-situ monitoring mode. Can work on flybys, if NIM off.
PEPLo Sensors ON: JDC, JEI | PEPLO |
| UVS_JUP_MONITORING_AP | Replaces previous monitoring stare. We perform a slow scan across the disk: assume 3 seconds per slit width, so 0.033 / s scan rate | UVS |
| RIM_EUROPA_FLYBY | RIME flyby observations or observations without on-board processing | RIME |
| RIM_CALLISTO_FLYBY | RIME flyby observations or observations without on-board processing. | RIME |
| RIM_GANYMEDE_FLYBY | RIME flyby observations or observations without on-board processing. | RIME |
| RPW_DL | RPWI observation during downlink windows | RPWI |
| RPW_STANDBY | RPWI Safe mode where the instrument can survive indefinitely and where memory patch, dump and check commands are accepted | RPWI |
| RPW_INIT | RPWI Transient mode while instrument is initialising after being powered on | RPWI |
| MAJ_AMALTHEA | S/C pointing Amalthea preferentially near maximal elongation of (2.54 R_J), 2 hemispheres, MAJIS spatial windowing (16 rows)
pointing: OFF-NADIR, S/C pointing Amalthea at 2.54 R_J while maintaining horizontal orientation of MAJIS slit
satellite orientation: Maintaining horizontal orientation of MAJIS slit, MAJIS scan mode activated for vertical sampling centered on the satellite (10 lines)
Duration: 100 sec for one hemisphere | MAJIS |
| PEL_GANYMEDE_IN_SITU_LOW_5 | Same as PEP_GANYMEDE_IN_SITU_LOW_1 but with lowest performance in JDC, JEI for max power savings while PEP-Lo is no (JEI 4 sectors, JDC low power). NIM, JNA off. Low power mode for Ganymede, good for long duration surveys.
PEPLo Sensors ON: JDC_LP, JEI 4 sectors, JNA & NIM off | PEPLO |
| PEL_GANYMEDE_IN_SITU_LOW_2 | Same as PEP_GANYMEDE_IN_SITU_NOMINAL_1 but with low performance in JDC, JEI to limit power (JE 4 sectors, JDC low power). NIM neutral, JNA on. Low power mode for Ganymede, good for long duration surveys with multiple instruments.
PEPLo Sensors ON: JEI: 4 sectors, JDC: LP, NIM: Neutral mode | PEPLO |
| PEL_GANYMEDE_IN_SITU_LOW_3 | Same as PEP_GANYMEDE_IN_SITU_NOMINAL_1 but with low performance in JDC, JEI to limit power (JEI 4 sectors, JDC low power). NIM ion, JNA on. Low power mode for Ganymede, good for long duration surveys with multiple instruments.
PEPLo Sensors ON: JEI: 4 sectors, JDC: LP, NIM: Ion mode | PEPLO |
| PEL_GANYMEDE_IN_SITU_LOW_4 | Same as PEP_GANYMEDE_IN_SITU_NOMINAL_1 but with low performance in JDC, JEI to limit power (JEI 4 sectors, JDC low power). NIM ion, JNA on. Low power mode for Ganymede, good for long duration surveys with multiple instruments.
PEPLo Sensors ON: JEI: 4 sectors, JDC: LP, NIM: Ion mode | PEPLO |
| PEL_GANYMEDE_IN_SITU_LOW_1 | Same as PEP_GANYMEDE_IN_SITU_NOMINAL_3 but with low performance in JDC, JEI to limit power (JEI 8 sectors, JDC low power). NIM, JNA off. Low power mode for Ganymede, good for long duration surveys
PEPLo Sensors ON: JDC_LP, JEI (8 sectors) | PEPLO |
| SWI_2D_MAP_FS_V1 | Same as SWI 2D MAP PS, except a frequency-switch calibration mode is
used instead of position-switch. It enables spending 100% of the integration time on-source. If
the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for
the CTS before downlink. | SWI |
| SWI_5POINT_CROSS_FS_V1 | Same as SWI 5POINT CROSS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time onsource.
For Jupiter, two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits
coding). For moon monitoring, two CTS spectra are recorded for 30 seconds over 210 channels
(16 bits coding). For both cases, and in parallel, two CCH measurements (20 bits coding) are
recorded for 0.1 second. If the purity of the spectral band is good enough, there is an option to
pre-compute ON-OFF for the CTS before downlink. Frequency-switch calibration method for
CTS data. | SWI |
| SWI_MOON_LIMB_SCAN_FS_V1 | Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits
coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and
a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral
band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink. | SWI |
| SWI_MOON_LIMB_STARE_FS_V1 | Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits
coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and
a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral
band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink. | SWI |
| SWI_NADIR_STARE_FS_V1 | Same as SWI NADIR STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time
on-source. If the purity of the spectral band is good enough, there is an option to pre-compute
ON-OFF for the CTS before downlink. | SWI |
| SWI_SPECTRAL_SCAN_ACS_FS_V1 | Same as SWI SPECTRAL SCAN ACS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. The ACS does not allow to pre-compute ON/OFF before downlink. A single
execution can cover up to 11 tunings. | SWI |
| SWI_SPECTRAL_SCAN_CTS_FS_V1 | Same as SWI SPECTRAL SCAN CTS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. If the purity of the spectral band is good enough, there is an option to precompute
ON-OFF for the CTS before downlink. A single execution can cover up to 9 tunings. | SWI |
| UVS_JUP_HP_AIRGLOW_STARE | Same as UVS_JUP_AP_AIRGLOW_STARE but for High spatial resolution Port (HP). Monitoring auroral and airglow emissions in stare mode using the Airglow Port (AP). Slit held along Jupiter' s North/South and on the central meridian, while Jupiter rotates below S/C creating a map. Histogram mode. | UVS |
| UVS_JUP_HP_LIMB_SCAN | Same as UVS_JUP_AP_LIMB_SCAN but through the HP port | UVS |
| UVS_JUP_HP_SCAN_MAP | Same as UVS_JUP_AP_SCAN_MAP but for High spatial resolution Port (HP). Scan the UVS slit in the cross slit direction across a region (e.g., auroral (N or S)) or entire disk using the Airglow (AP) port, scan at a constant rate across Jupiter to produce a map. Observation performed in pixel list mode to reach a time resolution of 0.001 s. | UVS |
| UVS_JUP_AP_SCAN_MAP | Scan the UVS slit in the cross slit direction across a region (e.g., auroral (N or S)) or entire disk using the Airglow (AP) port, scan at a constant rate across Jupiter to produce a map. Observation performed in pixel list mode to reach a time resolution of 0.001 s. | UVS |
| GAL_GAN_OFF_POINTING | science mode for Ganymede off-nadir operations. | GALA |
| UVS_SAT_LIMB_STARE_AP | Search for faint atmospheric emissions by building signal to noise through long integrations. | UVS |
| UVS_SAT_LIMB_STARE_HP | Search for faint atmospheric emissions by building signal to noise through long integrations. | UVS |
| UVS_SAT_LIMB_SCAN_AP | Similar to disc scan observations, but holding the pointing relative to the limb during flyby sequences. | UVS |
| UVS_SAT_LIMB_SCAN_HP | Similar to disc scan observations, but holding the pointing relative to the limb during flyby sequences. | UVS |
| UVS_GCO_HISTOGRAM_003 | Similar to observation 001 but with increased spectral resolution to achieve < 2 nm resolution between 100 and 200 nm as specified in SciRD | UVS |
| UVS_GCO_HISTOGRAM_002 | Similar to observation 001 but with Increased time sampling to capture auroral morphology and variability | UVS |
| SWI_2D_MAP_OTF_CCH_V1 | Similar to SWI 2D MAP PS, but using an on-the-fly recording sequence,
i.e. the OFF position per map row is only observed once. | SWI |
| SWI_2D_MAP_OTF_V1 | Similar to SWI 2D MAP PS, but using an on-the-fly recording sequence,
i.e. the OFF position per map row is only observed once. | SWI |
| UVS_EUR_SCAN_HIGH_RES_OBSOLETE | Similar to UVS_DISK_SCAN but higher resolution.
pointing: start at -1.5 satellite radii from the satellite centre, scan in the direction perpendicular to the slit across the disk, ending at +1.5 satellite radii from the centre | UVS |
| UVS_IO_SCAN | Similar to UVS_DISK_SCAN, but including extra emission lines e.g. from S and Cl. Also requires different spatial binning since Io is more distant | UVS |
| SWI_TSYS_ACS_CCH_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the ACS & CCH 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1
second. A single execution can cover up to 15 tunings. | SWI |
| SWI_TSYS_ACS_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the ACS 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1 second. A
single execution can cover up to 16 tunings. | SWI |
| SWI_TSYS_CCH_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the CCH 1 & 2 by observing the hot load and cold sky. A single execution can cover up to 16
tunings. | SWI |
| SWI_TSYS_CTS_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the CTS 1 & 2 by observing the hot load and cold sky. Integration time on CTS is 2 seconds. A
single execution can cover up to 15 tunings. | SWI |
| MAJ_BORESIGHT_ALIGNEMENT | Star sequence for geometrical calibration.
A star is initially pointed using the MAJIS boresight, then MAJIS is operated with the scan mechanism at high resolution (1/3 of IFOV) over 18 lines centered in the star. Then this operation is successively observed after 4 S/C repointings of 1.5° around X and Y.
Pointing : inertial
Satellite orientation: S/C pointing the star and MAJIS scans
Duration: 18 to 180 sec per position (5 positions in total)+ stabilization time for repointing not taken into account | MAJIS |
| MAJ_JUP_EVENT_MONITORING | Study of the evolution of unusual phenomena in Jupiter atmosphere, especially in their zonal evolution MAJIS will acquire several “subcubes” with limited number of lines (about 80) as follows:
1. a series of sub-cubes (from 1 to 4) is acquired with the scan mirror to get the coverage of a limited latitude region at all longitudes on the visible side of the planet. Satellite is re-pointed before acquiring each sub-cube
2. the series at previous point is repeated at fixed time intervals (in the order of 1 h, TBC) to monitor the temporal evolution.
Pointing type: YS, Series of OFF-NADIR pointings (‘off-nadir scan mode’)
satellite orientation: HORIZONTAL
Duration:
160 sec for each sub-cube.
Time between series defines actual temporal sampling and is variable (zero data rate here).
Total duration about 5 h (1/2 of rotation period) | MAJIS |
| MAJ_GCO5000_GLOBAL | Systematic mapping performed with cross-track binning by 4 during circular phase (~120 days)
3 km/pixel, 300x300 km swaths, spatial binning x 4.
Pointing: YS, Nadir
Satellite orientation: MAJIS slit at a slant with the ground track except at the equator
Duration: 4H per orbit (one cube: 6 min) | MAJIS |
| JAN_SCI_INERTIAL | TBW | JANUS |
| MAJ_HEATER_SURVIVAL | The FPEs (IR/VISNIR) shall be kept at T > 120K. This function is covered by the Survival Heater lines that are controlled by the S/C.
Two cases can be foreseen: the two heaters are activated and only one is ON (most realistic case based on thermal analysis) | MAJIS |
| UVS_JUP_SP_SOL_OCC | The large solar disc and the substantial distance from Jupiter mean that this will not provide the same vertical resolution as stellar occultations, but are useful for measurements of minor/trace constituents due to high S/N. This uses a fixed scan through the Solar Port (SP) at a selected RA and DEC, holding the pointing for an extended amount of time. Note: Here histograms, but pixellist mode possible. | UVS |
| MAJ_JUP_LIMB_SCAN | The MAJIS pointing mirror is used to scan the atmosphere of Jupiter over the limb up to 1500km. Exposure times are optimized for weak limb emissions.
The scan mirror step of 1/10 MAJIS IFOV shall constrain the spatial sampling provides a spatial supersampling adequate to reconstruct, by deconvolution, the signal vertical profile at sub-pixel scale.
Observations consists in sets of max. 8 cubes at different latitudes, around the limb of the planet.
Duration: Typically 20 min for each cube (110 lines), assuming 11 s per line | MAJIS |
| MAJ_JUP_HIGHFREQ_MONITORING | The observing type is designed to study the evolution of atmospheric features at high temporal frequency as well as to map specific atmospheric features at regional scale.
Scanning of features on the Jovian disc, on dayside as well as on nightside, with limited latitudinal coverage.
MAJIS will acquire one or more several “subcubes” with a limited number of lines (about between 64 and 160)
Duration: between 84 and 315 s for each cube, assuming 2.1 s per line | MAJIS |