SWI_POINTING_ACS_CCH | : Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2 and the CCH 1 & 2.Integration time on the ACS and CCH are 1s and 0.1s, respectively. | SWI |
SWI_OFF | All instrument subsystems including the DPU will be switched off. Consequently there will be no housekeeping data and no telemetry. The instrument will be in this mode during launch and cruise phase, except during calibration campaigns (e.g. planet flybys). | SWI |
SWI_ALLAN_ACS_FS | Allan variance characterization of the ACS 1 & 2 by integrating on the cold
sky. Integration time is 1 s. Frequency-switch calibration method. | SWI |
SWI_ALLAN_TOTAL_ACS | Allan variance characterization of the ACS 1 & 2 by integrating on the cold sky. Integration time is 1 s | SWI |
SWI_ALLAN_TOTAL_CCH | Allan variance characterization of the CCH 1 & 2 by integrating on the cold sky. Integration time is 0.1 s. | SWI |
SWI_ALLAN_TOTAL_CTS | Allan variance characterization of the CTS 1 & 2 by integrating on the cold
sky. Integration time is 1.5 s. | SWI |
SWI_ALLAN_CTS_FS | Allan variance characterization of the CTS 1 & 2 by integrating on the cold sky. Integration time is 1.5 s. Frequency-switch calibration method. | SWI |
SWI_MECHANISM | Check of mechanism response to commands. Integration time on the CTS is 10 seconds. | SWI |
SWI_POINTING_ACS | Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the ACS 1 & 2. Integration time on the ACS is 1s. | SWI |
SWI_POINTING_CCH | Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CCH 1 & 2. Integration time on the CCH is 0.1s. | SWI |
SWI_POINTING_CTS_CCH | Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2 and the CCH 1 & 2. Integration time on the CTS and CCH are 1.5s and 0.1s, respectively. | SWI |
SWI_POINTING_CTS | Determination of absolute pointing offset between S/C and SWI (for the 2 bands) recording continuum maps with the CTS 1 & 2. Integration time on the CTS is 1.5s. | SWI |
SWI_DIAGNOSTIC | Diagnostic activity is allowed in this mode, including activation and control of sub-units, and service 6. | SWI |
SWI_MOON_LIMB_SCAN_PS_V1 | Investigation of Galilean Moons’ atmospheric composition, temperature,
and winds. Flyby: The atmospheric limb is rapidly scanned to achieve 5km vertical resolution.
Two CTS spectra are recorded for 1.5 sec over 210 channels (16 bits coding). GCO: The
atmospheric limb is scanned up and down rapidly with 10 km altitude steps and with 1.5 sec integration
time for two CTS spectra over 130 channels (16 bits coding). Position-switch calibration
method. | SWI |
SWI_MOON_LIMB_STARE_PS_V1 | Investigation of Galilean Moons’ atmospheric composition, temperature,
and winds). Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits coding).
GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and a different
altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. Position-switch calibration method. | SWI |
SWI_MOON_NADIR_STARE_FS_V1 | Investigation of Galilean Moons’ surface properties and atmospheric composition,
temperature, and winds, and surface properties. This mode can also be used to characterize
surface polarization by pointing 45 off-nadir, after rotating the S/C by 90 around its
nadir axis. It can also serve for solar occultation experiments to observe a weak molecular line
in the atmosphere of Jupiter, a Galilean Moon, or the Europa torus. Flyby: Two CTS spectra
are recorded for 30 seconds over 210 channels (16 bits coding). GCO: Two CTS spectra are
recorded for 10 seconds over 130 channels (16 bits coding). In both cases, two CCH measurements
(20 bits coding) are recorded for 0.1 sec, so that they are separated by maximum 1/2 beam
at 1200 GHz. Solar occultation: Two CTS spectra are recorded for 60 seconds over 10000 channels
(16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second.
Position-switch calibration method. | SWI |
SWI_MOON_NADIR_STARE_PS_V1 | Investigation of Galilean Moons’ surface properties and atmospheric composition,
temperature, and winds, and surface properties. This mode can also be used to characterize
surface polarization by pointing 45 off-nadir, after rotating the S/C by 90 around its
nadir axis. It can also serve for solar occultation experiments to observe a weak molecular line
in the atmosphere of Jupiter, a Galilean Moon, or the Europa torus. Flyby: Two CTS spectra
are recorded for 30 seconds over 210 channels (16 bits coding). GCO: Two CTS spectra are
recorded for 10 seconds over 130 channels (16 bits coding). In both cases, two CCH measurements
(20 bits coding) are recorded for 0.1 sec, so that they are separated by maximum 1/2 beam
at 1200 GHz. Solar occultation: Two CTS spectra are recorded for 60 seconds over 10000 channels
(16 bits coding), and two CCH measurements (20 bits coding) are recorded for 0.1 second.
Position-switch calibration method. | SWI |
SWI_JUP_LIMB_STARE_PS_V1 | Investigation of Jupiter’s stratospheric composition and temperature by targeting
one (or more) molecular line(s) at the planetary limb. The retrieval of vertical profiles
require a very high signal-to-noise ratio ( 100) and a very high spectral resolution (100kHz).
A coarser spectral resolution (i.e. 500kHz) is sufficient for detections. This mode is nominally
meant for deep integrations and implies numerous repetitions. A short 10-point across-limb
scan of the continuum emission is performed with the CCH to derive a posteriori the instrument
pointing. Two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits coding), and
two CCH measurements (20 bits coding) are recorded for 0.1 second. Position-switch calibration
method. | SWI |
SWI_JUP_LIMB_RASTER_PS_V1 | Investigation of Jupiter’s stratospheric winds, temperature and composition,
targeting one (or more) molecular line(s) at the planetary limb with a 3 resolution in latitude.
The investigation of Jupiter’s stratospheric dynamics (winds) requires measuring the Doppler shifts induced by zonal winds on strong lines. The observations require a very high signalto-
noise ratio ( 100) and a very high spectral resolution (100kHz). Similar requirements for
the investigation of Jupiter’s stratospheric chemical inventory and temperature as a function of
latitude. At each limb position, a short 10-point across-limb scan of the continuum emission
is performed with the CCH to derive a posteriori the instrument pointing. Two CTS spectra are
recorded for 60 seconds over 10000 channels (16 bits coding), and two CCH measurements (20
bits coding) are recorded for 0.1 second. Position-switch calibration method. | SWI |
SWI_NADIR_STARE_PS_V1 | Investigation of the atmospheric composition (and temperature) of Jupiter
and the Galilean moons. This mode is nominally meant for deep integrations and requires numerous
repetitions (e.g. monitoring of the moons). Two CTS spectra are recorded for 60 seconds
over 10000 channels (16 bits coding). Position-switch calibration method. | SWI |
SWI_NADIR_STARE_PS | Investigation of the atmospheric composition (and temperature) of Jupiter
and the Galilean moons. This mode is nominally meant for deep integrations and requires numerous
repetitions (e.g. monitoring of the moons). Two CTS spectra are recorded for 60 seconds
over 10000 channels (16 bits coding). Position-switch calibration method. | SWI |
SWI_SPECTRAL_SCAN_ACS_PS_V1 | Investigation of the atmospheric composition of Jupiter and the Galilean
moons. The whole frequency range available to SWI is scanned. This mode is nominally meant
for deep integrations and requires numerous repetitions (e.g. monitoring of the moons). Two
ACS spectra are recorded for 60 seconds over 1024 channels. Position-switch calibration method.
A single execution can cover up to 16 tunings. | SWI |
SWI_SPECTRAL_SCAN_CTS_PS_V1 | Investigation of the atmospheric composition of Jupiter and the Galilean
moons. The whole frequency range available to SWI is scanned. This mode is nominally meant for deep integrations and requires numerous repetitions (e.g. monitoring of the moons). Two
CTS spectra are recorded for 60 seconds over 10000 channels (16bit coding). Position-switch
calibration method. A single execution can cover up to 13 tunings.
Pointing Type: S/C: nadir or limb. Instrument: nadir or limb, using the SWI mechanism if S/C points
nadir and to reach the moons | SWI |
SWI_5POINT_CROSS_PS_V1 | Investigation of the Jovian and Galilean moon atmospheric composition, and Galilean surface properties by means of rough raster mapping. The stepsize is such that the opposite ends of the cross are separated by the size of the target in the given direction. For Jupiter, two CTS spectra are recorded every 60 seconds over 10000 channels (16 bits coding). For moon monitoring, two CTS spectra are recorded every 30 seconds over 210 channels (16 bits coding). For both cases, and in parallel, two CCH measurements (20 bits coding) are recorded every 0.1 second. Position-switch calibration method. | SWI |
SWI_UNLOCK | Launch lock release (on antenna & rocker mechanisms) is allowed only in this mode. | SWI |
SWI_SAFE | Mode used for USO stabilization prior to warm-up. As it takes several weeks to stabilize the USO, the latter should remain ON all the time in the science phase. Mode into which the instruments switches autonomously in case of an instrument anomaly is detected or if no more science operations are in the queue. Mode to be used during downlink. Only housekeeping telemetry is generated in this mode. | SWI |
SWI_STANDBY | Only the instrument DPU will be switched on and be able to accept instrument commands. Only housekeeping telemetry is generated in this mode. | SWI |
SWI_SCIENCE | Place holder:
one of the ASW mode, where the science script will be run ( i.e. from SWI_TSYS_CTS down to SWI_MOON_NADIR_STARE_FS) during the mission | SWI |
SWI_2D_MAP_FS_V1 | Same as SWI 2D MAP PS, except a frequency-switch calibration mode is
used instead of position-switch. It enables spending 100% of the integration time on-source. If
the purity of the spectral band is good enough, there is an option to pre-compute ON-OFF for
the CTS before downlink. | SWI |
SWI_5POINT_CROSS_FS_V1 | Same as SWI 5POINT CROSS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time onsource.
For Jupiter, two CTS spectra are recorded for 60 seconds over 10000 channels (16 bits
coding). For moon monitoring, two CTS spectra are recorded for 30 seconds over 210 channels
(16 bits coding). For both cases, and in parallel, two CCH measurements (20 bits coding) are
recorded for 0.1 second. If the purity of the spectral band is good enough, there is an option to
pre-compute ON-OFF for the CTS before downlink. Frequency-switch calibration method for
CTS data. | SWI |
SWI_JUP_LIMB_RASTER_FS_V1 | Same as SWI JUP LIMB RASTER PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time
on-source. If the purity of the spectral band is good enough, there is an option to pre-compute
ON-OFF for the CTS before downlink. | SWI |
SWI_JUP_LIMB_STARE_FS_V1 | Same as SWI JUP LIMB STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time
on-source. If the purity of the spectral band is good enough, there is an option to pre-compute
ON-OFF for the CTS before downlink. | SWI |
SWI_MOON_LIMB_SCAN_FS_V1 | Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits
coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and
a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral
band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink. | SWI |
SWI_MOON_LIMB_STARE_FS_V1 | Same as SWI MOON LIMB STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. Flyby: Two CTS spectra are recorded for 30 sec over 210 channels (16 bits
coding). GCO: Two CTS spectra are recorded for 30 sec over 130 channels (16 bits coding) and
a different altitude (5, 10, 20, 40, and 50 km) is scanned every orbit. If the purity of the spectral
band is good enough, there is an option to pre-compute ON-OFF for the CTS before downlink. | SWI |
SWI_NADIR_STARE_FS_V1 | Same as SWI NADIR STARE PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration time
on-source. If the purity of the spectral band is good enough, there is an option to pre-compute
ON-OFF for the CTS before downlink. | SWI |
SWI_SPECTRAL_SCAN_ACS_FS_V1 | Same as SWI SPECTRAL SCAN ACS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. The ACS does not allow to pre-compute ON/OFF before downlink. A single
execution can cover up to 11 tunings. | SWI |
SWI_SPECTRAL_SCAN_CTS_FS_V1 | Same as SWI SPECTRAL SCAN CTS PS, except a frequency-switch calibration
mode is used instead of position-switch. It enables spending 100% of the integration
time on-source. If the purity of the spectral band is good enough, there is an option to precompute
ON-OFF for the CTS before downlink. A single execution can cover up to 9 tunings. | SWI |
SWI_2D_MAP_OTF_CCH_V1 | Similar to SWI 2D MAP PS, but using an on-the-fly recording sequence,
i.e. the OFF position per map row is only observed once. | SWI |
SWI_2D_MAP_OTF_V1 | Similar to SWI 2D MAP PS, but using an on-the-fly recording sequence,
i.e. the OFF position per map row is only observed once. | SWI |
SWI_2D_MAP_OTF | Similar to SWI 2D MAP PS, but using an on-the-fly recording sequence, i.e. the OFF position per map row is only observed once. | SWI |
SWI_TSYS_ACS_CCH_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the ACS & CCH 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1
second. A single execution can cover up to 15 tunings. | SWI |
SWI_TSYS_ACS_CCH | Spectral scan to measure the system temperature spectra of the 2 bands with
the ACS & CCH 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1
second. A single execution can cover up to 15 tunings. | SWI |
SWI_TSYS_ACS_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the ACS 1 & 2 by observing the hot load and cold sky. Integration time on ACS is 1 second. A
single execution can cover up to 16 tunings. | SWI |
SWI_TSYS_CCH_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the CCH 1 & 2 by observing the hot load and cold sky. A single execution can cover up to 16
tunings. | SWI |
SWI_TSYS_CTS_V1 | Spectral scan to measure the system temperature spectra of the 2 bands with
the CTS 1 & 2 by observing the hot load and cold sky. Integration time on CTS is 2 seconds. A
single execution can cover up to 15 tunings. | SWI |
SWI_2D_MAP_PS_V1 | This is a multi-purpose mode that can be used on any science target for
any 2D mapping, and meridional or zonal rasters. This mode will also be used for calibration
purposes (e.g. pointing). The number of rows and columns and the stepsize of the raster map is adaptable to the target angular size. Jupiter: Investigation of the global and regional stratospheric
composition and temperature of Jupiter, and pointing calibration. For 2D maps, meridional
scans and zonal scans, two CTS spectra are recorded for 60 seconds over 10000 channels
(16 bits coding). Moon monitoring: Investigation of the spatial distribution of Galilean moons
atmospheric species (+ monitoring), and calibration. Two CTS spectra are recorded for 60 seconds
over 210 channels (16 bits coding). Flybys: Mapping of Galilean Moons’ surface properties
and atmospheric composition, temperature, and winds. Two CTS spectra are recorded for 30 seconds
over 210 channels (16 bits coding). GCO: (1) Investigation of Ganymede’s atmospheric
composition, temperature, and winds, and surface properties by scanning from limb to limb with
the along-track mechanism across the ground-track using the antenna mechanism ( 72 ). Two
CTS spectra are recorded for 10 seconds over 130 channels (16 bits coding). (2) Tomographic
investigation of Ganymede’s atmospheric and surface composition, temperature, and winds by
scanning along-track from 30km to +30km of the nadir axis with 9 steps, using the rocker
mechanism ( 4.3 ), and with 1.5 sec integration time for two CTS spectra over 130 channels
(16 bits coding). In all cases, two CCH measurements (20 bits coding) are recorded for 0.1
second. During GCO, this implies that two CCH measurements are separated by 1/2 beam at
1200 GHz. Position-switch calibration method (the OFF position is observed after each ON of
the map is observed). | SWI |
SWI_WARMUP | Warm-up mode. | SWI |