Select segment definition to view

2
1
G_IS Working Group 3
G_IS_3G3Ganymede in-situ observations around closest approachWorking Group 3
G_IS_4G4 Working Group 3
G_IS_OBSG_IS_OBSWorking Group 3
GANYMEDE_ENAFar approach energetic neutral atom imaging of GanymedeWorking Group 3
GANYMEDE_FLYBY_RPWI_IONO_AJS Working Group 3
GANYMEDE_GMIn situ mapping of global configuration and monitoring dynamics of Ganymede's magnetospheric environmentWorking Group 3
GANYMEDE_IONOGANYMEDE_IONO In situ Ganymede ionosphere observationWorking Group 3
GANYMEDE_WAKEIn situ Ganymede wake observationWorking Group 3
JM_CB Working Group 3
JM_ENA Working Group 3
JM_GM Working Group 3
JM_INCL Working Group 3
JM_PEassuming: JMAG: 2.31 kbps RPWI: 1.7*2.167 kbps PEP: 2 kpbs (ball park number; discussion with Gabriella at WG3 F2F meeting in Sept 2018)Working Group 3
JM_PE_OBSJupiter Magnetosphere perijove segments containing link to observations databaseWorking Group 3
JM_PE_P4Perijoves with WG3 prime (--> 20/09/18: modified (discussion with OW). assuming ~2 times what is produced in G4-G5 scenario (~6.5-7 Gb). Corresponds roughly to 19kbps, copied from JA_INCL) RS rate assumes no D/L suspension (case 2)Working Group 3
JM_PE_P4_noDL Working Group 3
JM_PE13share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE15share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE17share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE19share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE21share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE23share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE25share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE27share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE29share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE31share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE33share prime high lat PJ between WG3 and WG4Working Group 3
JM_PE35 Working Group 3
JUPITER_CBIn situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments.Working Group 3
JUPITER_CPIn situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments. CP stands for corotation profileWorking Group 3
JUPITER_CPSIn situ Jupiter current/plasma sheet observationWorking Group 3
JUPITER_ENAImaging of Jupiter's magnetosphere in energetic neutral atoms (ENAs).Maximize pitch angle coverage with PEP JEI,JDC,JoEE, JENI (ion mode) a) JENI has a broad FoV and captures Jupiter and the Io/Europa torus and magnetosphere at most times. No special pointing design required for JENI besides requiring an approximate nadir pointing (considerable offsets can still be acceptable) b) JNA disk-shaped/slit FoV has a slight offset from the XZ spacecraft plane, meaning that during nadir pointing, it images preferentially the northern or southern extension of the Europa/Io torus, whereas Jupiter may be in the edge or outside of the FoV, especially at large distances. Scans (small rotations around Sc-X) or periods with stable, small offset of the SC-xz plane from Nadir can help to better image stronger emissions from the equatorial torusWorking Group 3
JUPITER_GMIn situ mapping of global configuration and monitoring dynamics of the Jovian magnetospheric environment. corotation should be in the FoV of PEP/JDC or PEP/JEI. Conditions for coverage: ◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation ◦ Boresight angle of JDC or JEI less than ˜90 deg Conditions for ideal coverage: ◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation ◦ Boresight angle less than ˜75 deg (JEI) or 70 deg (JDC): corotation away from the FoV edge JDC is preferred for monitoring corotation, over JEI, when possible.Working Group 3
JUPITER_NULLIn situ Jupiter magnetic null searchWorking Group 3
JUPITER_PDTIn situ Jupiter particle distribution transition region observation. Maximize pitch angle coverage for PEP/JEI, JDC,JoEE, JENI (ion mode)Working Group 3
JUPITER_TAILIn situ search for signatures of local magnetic reconnection in the Jovian magnetotailWorking Group 3
TOR_RS Working Group 3
EARTH_OCCEarth occultation by JupiterWorking Group 4
EARTH_OCC_EGRESSEarth occultation by Jupiter. EgressWorking Group 4
EARTH_OCC_INGRESSEarth occultation by Jupiter. IngressWorking Group 4
INCLINED_NORTH Working Group 4
INCLINED_SOUTH Working Group 4
J_AURORA Working Group 4
JA_INCL Working Group 4
JA_INCL_noDLcreated for case 1Working Group 4
JA_M Working Group 4
JA_PE Working Group 4
JA_PE_JANUSIn-situ cloned from JA_PE Remote sensing: cloned from JA_PE removing MAJIS: JANUS: 55.5*76/(76-8*4)=33.62kbps SWI: 5.8 kbps UVS: 2.25 kbps total: 89.17 kbpsWorking Group 4
JA_PE_MAJIS Working Group 4
JA_PE_noDL Working Group 4
JA_PE_OBSJA_PE generic for link obs<-> segmentsWorking Group 4
JA_PE1test 3_2Working Group 4
JA_PE10 Working Group 4
JA_PE11 Working Group 4
JA_PE12 Working Group 4
JA_PE13work-aroudn for aegmentation schedulerWorking Group 4
JA_PE14 Working Group 4
JA_PE15work-aroudn for aegmentation schedulerWorking Group 4
JA_PE16 Working Group 4
JA_PE17work-around for segmentation schedulerWorking Group 4
JA_PE18 Working Group 4
JA_PE19work around for segmentation schedulerWorking Group 4
JA_PE2 Working Group 4
JA_PE20 Working Group 4
JA_PE21JA_PE21Working Group 4
JA_PE22 Working Group 4
JA_PE23work around for segmentation schedulerWorking Group 4
JA_PE24 Working Group 4
JA_PE25JA_PE25Working Group 4
JA_PE26 Working Group 4
JA_PE27work around for segmentation schedulerWorking Group 4
JA_PE28 Working Group 4
JA_PE29work around for segmentation schedulerWorking Group 4
JA_PE3 Working Group 4
JA_PE30 Working Group 4
JA_PE31work around for segmentation schedulerWorking Group 4
JA_PE32 Working Group 4
JA_PE33work around for segmentation schedulerWorking Group 4
JA_PE34 Working Group 4
JA_PE35work around for segmentation schedulerWorking Group 4
JA_PE36 Working Group 4
JA_PE37 Working Group 4
JA_PE38 Working Group 4
JA_PE39 Working Group 4
JA_PE4 Working Group 4
JA_PE40 Working Group 4
JA_PE41 Working Group 4
JA_PE42 Working Group 4
JA_PE43 Working Group 4
JA_PE44 Working Group 4
JA_PE45 Working Group 4
JA_PE46 Working Group 4
JA_PE47 Working Group 4
JA_PE48 Working Group 4
JA_PE49 Working Group 4
JA_PE5 Working Group 4
JA_PE50 Working Group 4
JA_PE51 Working Group 4
JA_PE52 Working Group 4

1 2 3 4 5 6 7 648 segment definitions