JA_PH | Jupiter Atmosphere prime segment at min-90-max phase.
pointing target is Jupiter although pointing type is TBD (limb, etc) | Working Group 4 |
JANUS_DESIGNER_OBSERVATION | | JANUS |
JANUS_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | JANUS |
JANUS_PRIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | JANUS |
JANUS_RIDER_OBSERVATION | Placeholder for JUICE SOC Observations. | JANUS |
JM_CB | | Working Group 3 |
JM_ENA | | Working Group 3 |
JM_GM | Jupiter Magnetosphere global monitoring.
Large pointing flexibility, constraints mainly driven by PEP | Working Group 3 |
JM_INCL | | Working Group 3 |
JM_PE | assuming:
JMAG: 2.31 kbps
RPWI: 1.7*2.167 kbps
PEP: 2 kpbs (ball park number; discussion with Gabriella at WG3 F2F meeting in Sept 2018) | Working Group 3 |
JM_PE_OBS | Jupiter Magnetosphere perijove segments containing link to observations database | Working Group 3 |
JM_PE_P4 | Perijoves with WG3 prime (--> 20/09/18: modified (discussion with OW). assuming ~2 times what is produced in G4-G5 scenario (~6.5-7 Gb). Corresponds roughly to 19kbps, copied from JA_INCL)
RS rate assumes no D/L suspension (case 2) | Working Group 3 |
JM_PE_P4_noDL | | Working Group 3 |
JM_PE13 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE15 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE17 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE19 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE21 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE23 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE25 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE27 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE29 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE31 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE33 | share prime high lat PJ between WG3 and WG4 | Working Group 3 |
JM_PE35 | | Working Group 3 |
JMAG_CALROLL | 5 calibration roll needed by JMAG. 2 as soon as possible after JOI. 3 during phase 5: one at the start of phase 5, the last 2 as late as possible before GOI | WGX |
JMAG_DESIGNER_OBSERVATION | | JMAG |
JMAG_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | JMAG |
JMAG_PRIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | JMAG |
JMAG_RIDER_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | JMAG |
JUICE_PRIME_OBSERVATION | Placeholder for JUICE SOC Observations. | JUICE |
JUPITER_CB | In situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments. | Working Group 3 |
JUPITER_CP | In situ Jupiter corotation breakdown region and plasma transport observation. Maximize the intervals for which co-rotation is measured to build spatial and temporal coverage of corotation profiles across the magnetosphere and also in the local moon environments.
CP stands for corotation profile | Working Group 3 |
JUPITER_CPS | In situ Jupiter current/plasma sheet observation | Working Group 3 |
JUPITER_ENA | Imaging of Jupiter's magnetosphere in energetic neutral atoms (ENAs).Maximize pitch angle coverage with PEP JEI,JDC,JoEE, JENI (ion mode)
a) JENI has a broad FoV and captures Jupiter and the Io/Europa torus and magnetosphere at most times. No special pointing design required for JENI besides requiring an approximate nadir pointing (considerable offsets can still be acceptable)
b) JNA disk-shaped/slit FoV has a slight offset from the XZ spacecraft plane, meaning that during nadir pointing, it images preferentially the northern or southern extension of the Europa/Io torus, whereas Jupiter may be in the edge or outside of the FoV, especially at large distances. Scans (small rotations around Sc-X) or periods with stable, small offset of the SC-xz plane from Nadir can help to better image stronger emissions from the equatorial torus | Working Group 3 |
JUPITER_FD_EPHEM_CAL | | GENERIC |
JUPITER_FD_EPHEM_EUR | | GENERIC |
JUPITER_FD_EPHEM_GAN | | GENERIC |
JUPITER_FD_NAV_FB | | GENERIC |
JUPITER_FD_TCM | | GENERIC |
JUPITER_FD_WOL | Flight dynamics wheel off-loading slot, outside of Flyby preparation and recuperation | GENERIC |
JUPITER_FD_WOL_FB | In the last week before the fly-by a WOL slot shall be combined with the
TCM slot at To– 3 days (i.e. a single 3-hr slot). Another 2-hour WOL slot shall be reserved at To + 12 hours. | GENERIC |
JUPITER_GM | In situ mapping of global configuration and monitoring dynamics of the Jovian magnetospheric environment.
corotation should be in the FoV of PEP/JDC or PEP/JEI.
Conditions for coverage:
◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
◦ Boresight angle of JDC or JEI less than ˜90 deg
Conditions for ideal coverage:
◦ Minimum angle less than about 11.25 deg (half-azimuthal sector size) of a JEI or JDC pixel from corotation
◦ Boresight angle less than ˜75 deg (JEI) or 70 deg (JDC): corotation away from the FoV edge
JDC is preferred for monitoring corotation, over JEI, when possible. | Working Group 3 |
JUPITER_INCLINED_AURORA | | Working Group 4 |
JUPITER_MONITORING | | Working Group 4 |
JUPITER_NULL | In situ Jupiter magnetic null search | Working Group 3 |
JUPITER_PDT | In situ Jupiter particle distribution transition region observation.
Maximize pitch angle coverage for PEP/JEI, JDC,JoEE, JENI (ion mode) | Working Group 3 |
JUPITER_PERIJOVE | Jupiter observations | Working Group 4 |
JUPITER_PHASE_090 | | Working Group 4 |
JUPITER_PHASE_120_DEC | | Working Group 4 |
JUPITER_PHASE_120_INC | | Working Group 4 |
JUPITER_PHASE_135_DEC | | Working Group 4 |
JUPITER_PHASE_135_INC | | Working Group 4 |
JUPITER_PHASE_150_DEC | | Working Group 4 |
JUPITER_PHASE_150_INC | | Working Group 4 |
JUPITER_PHASE_165_DEC | | Working Group 4 |
JUPITER_PHASE_165_INC | | Working Group 4 |
JUPITER_PHASE_MAX | | Working Group 4 |
JUPITER_PHASE_MIN | | Working Group 4 |
JUPITER_TAIL | In situ search for signatures of local magnetic reconnection in the Jovian magnetotail | Working Group 3 |
MAJIS_DESIGNER_OBSERVATION | | MAJIS |
MAJIS_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | MAJIS |
MAJIS_PRIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | MAJIS |
MAJIS_RIDER_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | MAJIS |
NAVCAM_DESIGNER_OBSERVATION | | NAVCAM |
NAVCAM_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | NAVCAM |
NAVCAM_PRIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | NAVCAM |
NAVCAM_RIDER_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | NAVCAM |
OPNAV_CAL | OPNAV_CAL
Optical navigation window, targeting Callisto.
Pointing is Callisto tracking | GENERIC |
OPNAV_EUR | OPNAV_EUR
Optical navigation window, targeting Europa.
Pointing is Europa tracking (MPAD) | GENERIC |
OPNAV_GAN | OPNAV_GAN
Optical navigation window, targeting Ganymede.
Pointing is Ganymede tracking | GENERIC |
PEPHI_DESIGNER_OBSERVATION | | PEPHI |
PEPHI_OBSERVATION | | PEPHI |
PEPHI_PRIME_OBSERVATION | | PEPHI |
PEPLO_DESIGNER_OBSERVATION | | PEPLO |
PEPLO_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | PEPLO |
PEPLO_PRIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | PEPLO |
PERIJOVE_DAYSIDE | | Working Group 4 |
PERIJOVE_NIGHTSIDE | | Working Group 4 |
PERIJOVE_TERMINATOR | | Working Group 4 |
PR | | WGX |
RADEM_DESIGNER_OBSERVATION | | RADEM |
RADEM_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | RADEM |
RADEM_RIDER_OBSERVATION | | RADEM |
RECOVERY | | GENERIC |
RECOVERY_FLYBY | 15.15 hours recovery segments to be scheduled after flybys/eclipse, when standard instrument mode is assumed
Duration is derived from https://issues.cosmos.esa.int/juicewiki/display/SOCDEV/Downlink%2C+Recovery%2C+and+Eclipse+Scenario+Analysis
Pointing should be power optimized | GENERIC |
RIME_DESIGNER_OBSERVATION | | RIME |
RIME_OBSERVATION | Placeholder Segment to accomodate the detailed scenario observation plan generation process. | RIME |
RIME_PRIME_OBSERVATION | | RIME |
RIME_RIDER_OBSERVATION | | RIME |
RING_HP | Ring high phase | Working Group 2 |
RING_LP | Ring low phase | Working Group 2 |
RING_PHASECURV_10 | Opportunity implementation in geopipeline
SC distance to Jupiter larger than 8e5 km
SC elevation above the rings lower than 0.5 deg
Only one Ansae tested for phase conditions - value must be between 10 deg and 20 deg | Working Group 2 |
RING_PHASECURV_100 | | Working Group 2 |
RING_PHASECURV_110 | | Working Group 2 |
RING_PHASECURV_120 | | Working Group 2 |
RING_PHASECURV_130 | | Working Group 2 |
RING_PHASECURV_140 | | Working Group 2 |
RING_PHASECURV_150 | | Working Group 2 |
RING_PHASECURV_160 | | Working Group 2 |