UVS_JUP_AP_STELL_OCC | For moderately bright stars. Stars serve as a point source to provide good vertical resolution on Jupiter’s atmosphere. The field of view is pointed to a given RA and DEC and pointing held for an extended amount of time. The majority of the data can be omitted except for that of the star on the detector, so these can be done within a good data budget. Full spectral coverage. Note: Here, “moderate, histogram modeâ€, but pixellist or histogram mode low or high possible. | UVS |
UVS_JUP_HP_STELL_OCC | For bright stars, use the High spatial resolution port (HP) for higher contrast of star signal to Jupiter background signal. Used also as calibration reference standards. | UVS |
UVS_JUP_DEFAULT | default pointing to be inserted at the start and end of the timeline | UVS |
UVS_SAT_DISK_SCAN_HP | Construct spectral image cubes of multiple atmospheric emission line features (up to 1024 selectable spectral bins with a minimum of 3 key emissions: H Lya, OI 130.4 nm, OI 135.6 nm), with repeated scans to investigate highly time-variable auroral dynamics. | UVS |
UVS_SAT_DISK_SCAN_AP | Construct spectral image cubes of multiple atmospheric emission line features (up to 1024 selectable spectral bins with a minimum of 3 key emissions: H Lya, OI 130.4 nm, OI 135.6 nm), with repeated scans to investigate highly time-variable auroral dynamics. | UVS |
UVS_NC_STARE | Characterize the Io/Europa neutral clouds in the immediate vicinity of the satellite. Center satellite in slit. Align the slit with the satellite orbital plane | UVS |
UVS_SAT_SURF_HP | As UVS_SAT_SURF_AP but using the high resolution port for improved spatial resolution in key surface regions | UVS |
UVS_JUP_MONITORING_HP | As above, more of an auroral focus. 2-hour observations fit in between the AP monitoring observations | UVS |
NAVCAM_DVOL_BLOCK | | JUICE |
PEH_OFF_1 | PEP-Hi off
* Macro: 0 | PEPHI |
PEH_IDLE_1 | IDLE may include a sensor on HV but not taking science data, values to be updated
* Macro: 100 | PEPHI |
PEH_STBY_1 | Different STBY versions may include different sensors on, in Low voltage
* Macro: 100 | PEPHI |
PEH_JUPITER_IN_SITU_NOMINAL_1 | *Regular magnetosphere in-situ
monitoring mode
*Can work on flybys
* Macro: 117
Sensors ON: JENI, JoEE | PEPHI |
PEH_JUPITER_IN_SITU_IMAGING_BURST_1 | *Regular magnetosphere in-situ
& ENA imaging monitoring mode
* Macro: 148b
Sensors ON: JENI, JoEE. | PEPHI |
PEH_JUPITER_IN_SITU_LOW_1 | *Low power in-situ mode
(e.g. downlink, non-prime/low priority science sgments)
* Macro: 110
Sensors: JENI, JoEE | PEPHI |
PEH_JUPITER_IN_SITU_IMAGING_LOW_1 | *Low power in-situ & ENA imaging mode (e.g. downlink, non-prime/low priority science sgments
* Macro: 142
Sensors: JENI, JoEE | PEPHI |
PEH_JUPITER_IN_SITU_IMAGING_NOMINAL_1 | *Low power in-situ & ENA imaging mode (e.g. downlink, non-prime/low priority science sgments
* Macro: 142
Sensors ON: JENI, JoEE | PEPHI |
PEH_JUPITER_IN_SITU_BURST_1 | *Burst in-situ mode, magnetosphere
*CA of moon flybys
*Short duration events (magnetopause/bow shock crossings, injection events, moon wakes/microsignatures)
* Macro: 121
Sensors: JENI, JoEE | PEPHI |
PEH_GANYMEDE_IN_SITU_BURST_1 | *Burst in-situ mode, ganymede phase
*CA of moon flybys
*Short duration events (e.g. boundary crossings)
* Macro: 122 | PEPHI |
PEH_GANYMEDE_IN_SITU_NOMINAL_1 | * Regular in-situ mode, ganymede phase
*CA of moon flybys later in the mission (higher power consumption)
*Good for high quality, extended survey
* Macro: 118
Sensors: JENI, JoEE | PEPHI |