Select observation definition to view

3
2
1
MAJ_FLYBY_HRHigh resolution pubshbroom flyby observations of satellite dayside surfaces bracketing closest approach. Satellite offsets around Y (off-track pointing) axis during or prior to observation allow near-nadir pointing of specific regions. Motion compensation or MAJIS scan is achieved using the MAJIS internal pointing mirror depending on the S/C speed and distance. Binning can be applied may be required near C/A. Pointing: NYS, NADIR or OFF_NADIR after offset around Y (‘motion compensation PB’). Satellite orientation: MAJIS slit across track, Satellite offsets around Y (off-track pointing) axis possible. Duration: 20 to 130 secMAJIS
MAJ_FLYBY_MEDRESFlyby observations of the satellite surface with vertical (N-S) slews or MAJIS scan providing medium spatial resolution (e.g.resolution from 3 km to 1 km/pixel for Ganymede). Perform when the S/C moves slowly from approach YS phase to PB phase and during PB phase. Pointing: NYS, NADIR or OFF_NADIR after offset around Y ( ‘motion compensation PB’). Satellite orientation: MAJIS slit across track. Satellite offsets around Y (off-track pointing) axis or around X axis (for slew). Duration: a few minutes maximumMAJIS
MAJ_SAT_DISK_SLEWFlyby observations of the satellite surface with vertical (N-S) slews across track, during yaw-steering phase. One or two slews (pole to pole) necessary to complete dayside coverage. Satellite offset around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition. Pointing: NADIR Pointing, YS, S/C scan (slew) with offset around Y (‘mosaic mode’ tbc). MAJIS slit perpendicular to the ground-track. Satellite orientation: MAJIS slit perpendicular to the ground-track Duration: 30 minMAJIS
MAJ_SAT_LIMB_SCANFlyby observations of the satellite dayside or nightside limbs with vertical (N-S) slews across track, during yaw-steering phase. Satellite offsets to limb around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition or continuous slew pointing. Pointing: S/C slew scan centred a limb ( ‘Limb slew scan mode’). Satelliteo orientation: Slit tangent to the limb Duration: 60minMAJIS
MAJ_GEO5000During elliptical phase (~15 days before and after circular phase), mapping of selected areas (~40) at intermediate to high resolutions: 50 to <750 m/pix, bridging the gap in resolution between systematic mapping (MAJIS_GCO5000_global) and GCO ROIs (MAJIS_GCO500_HR). Pointing: YS, NADIR satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: from 35 min to 4H (Table 8 from budget report v2.1)MAJIS
MAJ_GCO5000_REGIONALDuring circular phase (~120 days), regional mapping of the surface of Ganymede, bridging the gap in resolution between systematic global mapping and HR ROI's observed at GCO-500. 750 m/pix (no spatial binning), 300x300 km swaths Pointing type: YS, NADIR Satellite orientation: MAJIS slit at a slant with the ground track except at the equator Duration: 6minMAJIS
MAJ_SAT_LIMB_TRACKContinuous stare observation of a satellite limb during flyby using inertial pointing from satellite, dayside or nightside. Additional offsets within limb by means of internal pointing mirror. Scanning with MAJIS internal mirror. (--> ‘track limb’). Pointing: S/C limb tracking (‘track limb’) satellite otientation: SLIT tangent to the limb (slit not aligned with S/C motion) Duration: 60minMAJIS
MAJ_STANDBYAfter switch-on of MAJIS, the Boot SW automatically starts, and performs the primary boot from the PROM (Init fugitive BSW mode). After processor modules initialization, the Boot software goes to STANDBY mode. By default, the ASW Image0 (stored in MRAM0 = ASM0) is autonomously loaded after a timeout of 30 seconds. MAJIS then enters into ASW init Mode and then into SAFE mode. In STANDBY Mode, all channels are off, and only DPU HK SID1 are received. MAJIS needs to be maintained in STANDBY mode using the TC(17,1) in the following cases : - upload (using service 6) of new ASW images (or CUSW, or firmware) into MRAM: FCP-MAJ-070 describes the maintenance process. - upload a new BROWSE Table FCP-MAJ-060 into MRAM - select ASW Image1 and then start ASW Image 1 instead of teh default ASW Image0. FCP-MAJ-062 - any other update of MRAM using service 6MAJIS
MAJ_JUP_DISK_MOSAICA series of several MAJIS_JUP_DISK_SCAN or MAJIS_JUP_DISK_SLEW Spacecraft has to be re-pointed between individual acquisitions. POinting type: YS, NADIR with offset around Y (‘ nadir offset MAJIS scan’’) satellite orientation: HORIZONTAL (preferred) Duration: 3 x (scan-duration + turnaround Y duration). Scan duration from 20 to 40 min depending on the distance from Jupiter. Turnaround ~50 minMAJIS
JAN_SCI_INERTIALTBWJANUS
JAN_SCI_PBObservations of single or multiple frames with a pointing offset wrt to nominal S/C pointing (e.g., wrt nadir-looking while in G orbit, during FB or while in Jupiter orbit)JANUS
JAN_SCI_RASTERObservations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C. The raster is done with a stop-and-go approach: the S/C maintain an inertial pointing allowing images acquisitions, then perform a slew to the new position and repeat the cycle till the (m x n) raster is completed. To be used while in J orbit or during FBs (out from CA phase). Children observation defined during scenarios: │ ├── JAN_SCI_RASTER_AMALTHEA_HIGH_RES │ ├── JAN_SCI_RASTER_AURORAS │ ├── JAN_SCI_RASTER_FEATURES │ ├── JAN_SCI_RASTER_GLOBAL_MAP │ ├── JAN_SCI_RASTER_HIGH_RES_MAP_JOINED_SET_003_S007_01_S00P01.def │ ├── JAN_SCI_RASTER_HIGH_RES_MAP │ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_1_S007_01_S00P01.def (name non compliant) │ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_2_S007_01_S00P01.def (name non compliant) │ ├── JAN_SCI_RASTER_IO_TRANSIT_001_S007_01_S00P01.def │ ├── JAN_SCI_RASTER_LIGHTING_MAP │ ├── JAN_SCI_RASTER_POLAR_SOUTHJANUS
JAN_SCI_SLEWObservations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C made with a continuous slew. The raster is done with continuous slew approach: images are acquired while the S/C is slewing; slew rate shall be adapted with the instrument angular sampling and the integration time. To be used while in J orbit or during FBs (out from CA phase)JANUS
JAN_OFFNo observations, instrument OFF.JANUS
JAN_CONFIG_ALLONNo observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are ON) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF.JANUS
JAN_CONFIG_ALLOFFNo observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are OFF) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF.JANUS
JAN_IDLENo observations, but instrument ON for thermal stabilization before observations or between two observation phases that are too close to switch the instrument OFF.JANUS
JAN_SCI_LIMBChildren observations defined during scenarios │ ├── JAN_SCI_LIMB_HAZES │ ├── JAN_SCI_LIMB_HIGHPHASE │ ├── JAN_SCI_LIMB_POLAR_SOUTHJANUS
GAL_GAN_OFF_POINTINGscience mode for Ganymede off-nadir operations.GALA
GAL_MONITORING_GANPrimary science mode for Ganymede operationsGALA
GAL_FULLSCIENCE_FLYBYPrimary full science for flyby operations during closest approach.GALA
GAL_LR_FB_ALBEDOPassive albedo operations for flybys – before or after closest approachGALA
GAL_IDLEIdle operations.GALA
GAL_HR_TARGET_GANAdditional science mode for Ganymede operationsGALA
GAL_WARMUP_GANActive operation for laser warmup. This observation shall be used before real science measurements, e.g. before closest approach.GALA
3GM_JUPITER_OCCULTATIONThe radio science experiment 3GM, with its 1-way dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. USO unmuted, HAA in nominal SCIENCE.3GM
3GM_IO_PLASMA_TORUS_OCCULTATIONThe radio science experiment 3GM will use navigation data in X/X and X/Ka band to characterize the Io plasma torus. The data generated by the DST in 2-way dual-frequency radio links will be the primary observable to perform this investigation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. USO will stay MUTED and HAA in nominal SCIENCE. Note that other observation strategy would be possible (2-way triple link, 1-way X and Ka link with USO UNMUTED).3GM
3GM_GRAVITY_GCO500_200Gravity measurement during GCO500 and GCO200 will use the HGA during downlink sessions. If not possible, it will use the MGA. KaT and HAA should be operating during gravity measurement. USO is OFF during this phase (except in case of BSR opportunity). HAA should be in STANDBY mode at least 48 hours before the gravity measurement. The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up.3GM
3GM_GRAVITY_FLYBYSGravity measurement during flyby requires the use of the MGA. KaT and HAA should be operating during gravity measurements USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach. HAA should be in CONFIGURATION mode at least 48 hours before the gravity measurement. The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up. Additional X/X and X/Ka (DST) link may be required whenever the Sun- Earth-Spacecraft angle is < 60 deg to cancel noise due to the solar wind plasma.3GM
3GM_GRAVITY_TOURGravity measurement during flyby requires the use of the HGA. KaT and HAA should be operating during gravity measurement USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach. HAA should be in CONFIGURATION mode at least 48 hours before the gravity measurement. The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up. Additional X/X and X/Ka (DST) link may be required whenever the Sun- Earth-Spacecraft angle is < 60 deg to cancel noise due to the solar wind plasma3GM
3GM_BISTATIC_RADARCharacterization of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted. The HAA shall be in SCIENCE to calibrate the sloshing potentially excited by pointing the HGA toward a moon’s Surface.3GM

1 2 3 231 observation definitions