| MAJ_FLYBY_HR | High resolution pubshbroom flyby observations of satellite dayside surfaces bracketing closest approach. Satellite offsets around Y (off-track pointing) axis during or prior to observation allow near-nadir pointing of specific regions. Motion compensation or MAJIS scan is achieved using the MAJIS internal pointing mirror depending on the S/C speed and distance. Binning can be applied may be required near C/A.
Pointing: NYS, NADIR or OFF_NADIR after offset around Y (‘motion compensation PB’).
Satellite orientation: MAJIS slit across track, Satellite offsets around Y (off-track pointing) axis possible.
Duration: 20 to 130 sec | MAJIS |
| MAJ_FLYBY_MEDRES | Flyby observations of the satellite surface with vertical (N-S) slews or MAJIS scan providing medium spatial resolution (e.g.resolution from 3 km to 1 km/pixel for Ganymede). Perform when the S/C moves slowly from approach YS phase to PB phase and during PB phase.
Pointing: NYS, NADIR or OFF_NADIR after offset around Y ( ‘motion compensation PB’).
Satellite orientation: MAJIS slit across track. Satellite offsets around Y (off-track pointing) axis or around X axis (for slew).
Duration: a few minutes maximum | MAJIS |
| MAJ_SAT_DISK_SLEW | Flyby observations of the satellite surface with vertical (N-S) slews across track, during yaw-steering phase. One or two slews (pole to pole) necessary to complete dayside coverage. Satellite offset around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition.
Pointing: NADIR Pointing, YS, S/C scan (slew) with offset around Y (‘mosaic mode’ tbc). MAJIS slit perpendicular to the ground-track.
Satellite orientation: MAJIS slit perpendicular to the ground-track
Duration: 30 min | MAJIS |
| MAJ_SAT_LIMB_SCAN | Flyby observations of the satellite dayside or nightside limbs with vertical (N-S) slews across track, during yaw-steering phase. Satellite offsets to limb around Y-axis (E-W) before each observation, then satellite offsets around X axis (N-S) between each slit acquisition or continuous slew pointing.
Pointing: S/C slew scan centred a limb ( ‘Limb slew scan mode’).
Satelliteo orientation: Slit tangent to the limb
Duration: 60min | MAJIS |
| MAJ_GEO5000 | During elliptical phase (~15 days before and after circular phase), mapping of selected areas (~40) at intermediate to high resolutions: 50 to <750 m/pix, bridging the gap in resolution between systematic mapping (MAJIS_GCO5000_global) and GCO ROIs (MAJIS_GCO500_HR).
Pointing: YS, NADIR
satellite orientation: MAJIS slit at a slant with the ground track except at the equator
Duration: from 35 min to 4H (Table 8 from budget report v2.1) | MAJIS |
| MAJ_GCO5000_REGIONAL | During circular phase (~120 days), regional mapping of the surface of Ganymede, bridging the gap in resolution between systematic global mapping and HR ROI's observed at GCO-500.
750 m/pix (no spatial binning), 300x300 km swaths
Pointing type: YS, NADIR
Satellite orientation: MAJIS slit at a slant with the ground track except at the equator
Duration: 6min | MAJIS |
| MAJ_SAT_LIMB_TRACK | Continuous stare observation of a satellite limb during flyby using inertial pointing from satellite, dayside or nightside. Additional offsets within limb by means of internal pointing mirror. Scanning with MAJIS internal mirror. (--> ‘track limb’).
Pointing: S/C limb tracking (‘track limb’)
satellite otientation: SLIT tangent to the limb (slit not aligned with S/C motion)
Duration: 60min | MAJIS |
| MAJ_STANDBY | After switch-on of MAJIS, the Boot SW automatically starts, and performs the primary boot from the PROM (Init fugitive BSW mode).
After processor modules initialization, the Boot software goes to STANDBY mode. By default, the ASW Image0 (stored in MRAM0 = ASM0) is autonomously loaded after a timeout of 30 seconds. MAJIS then enters into ASW init Mode and then into SAFE mode.
In STANDBY Mode, all channels are off, and only DPU HK SID1 are received.
MAJIS needs to be maintained in STANDBY mode using the TC(17,1) in the following cases :
- upload (using service 6) of new ASW images (or CUSW, or firmware) into MRAM: FCP-MAJ-070 describes the maintenance process.
- upload a new BROWSE Table FCP-MAJ-060 into MRAM
- select ASW Image1 and then start ASW Image 1 instead of teh default ASW Image0. FCP-MAJ-062
- any other update of MRAM using service 6 | MAJIS |
| MAJ_JUP_DISK_MOSAIC | A series of several MAJIS_JUP_DISK_SCAN or MAJIS_JUP_DISK_SLEW
Spacecraft has to be re-pointed between individual acquisitions.
POinting type: YS, NADIR with offset around Y (‘ nadir offset MAJIS scan’’)
satellite orientation: HORIZONTAL (preferred)
Duration:
3 x (scan-duration + turnaround Y duration). Scan duration from 20 to 40 min depending on the distance from Jupiter. Turnaround ~50 min | MAJIS |
| JAN_SCI_INERTIAL | TBW | JANUS |
| JAN_SCI_PB | Observations of single or multiple frames with a pointing offset wrt to nominal S/C pointing (e.g., wrt nadir-looking while in G orbit, during FB or while in Jupiter orbit) | JANUS |
| JAN_SCI_RASTER | Observations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C. The raster is done with a stop-and-go approach: the S/C maintain an inertial pointing allowing images acquisitions, then perform a slew to the new position and repeat the cycle till the (m x n) raster is completed. To be used while in J orbit or during FBs (out from CA phase).
Children observation defined during scenarios:
│ ├── JAN_SCI_RASTER_AMALTHEA_HIGH_RES
│ ├── JAN_SCI_RASTER_AURORAS
│ ├── JAN_SCI_RASTER_FEATURES
│ ├── JAN_SCI_RASTER_GLOBAL_MAP
│ ├── JAN_SCI_RASTER_HIGH_RES_MAP_JOINED_SET_003_S007_01_S00P01.def
│ ├── JAN_SCI_RASTER_HIGH_RES_MAP
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_1_S007_01_S00P01.def (name non compliant)
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_PART_2_S007_01_S00P01.def (name non compliant)
│ ├── JAN_SCI_RASTER_IO_TRANSIT_001_S007_01_S00P01.def
│ ├── JAN_SCI_RASTER_LIGHTING_MAP
│ ├── JAN_SCI_RASTER_POLAR_SOUTH | JANUS |
| JAN_SCI_SLEW | Observations of multiple frames in (m x n) positions targeted with a raster pointing of the S/C made with a continuous slew. The raster is done with continuous slew approach: images are acquired while the S/C is slewing; slew rate shall be adapted with the instrument angular sampling and the integration time. To be used while in J orbit or during FBs (out from CA phase) | JANUS |
| JAN_OFF | No observations, instrument OFF. | JANUS |
| JAN_CONFIG_ALLON | No observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are ON) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF. | JANUS |
| JAN_CONFIG_ALLOFF | No observations, but instrument ON for thermal stabilization of the complete electronics (PEU and detector are OFF) and for setting the observation sequences and between two observation sequences that are too close to switch the detector OFF. | JANUS |
| JAN_IDLE | No observations, but instrument ON for thermal stabilization before observations or between two observation phases that are too close to switch the instrument OFF. | JANUS |
| JAN_SCI_LIMB | Children observations defined during scenarios
│ ├── JAN_SCI_LIMB_HAZES
│ ├── JAN_SCI_LIMB_HIGHPHASE
│ ├── JAN_SCI_LIMB_POLAR_SOUTH | JANUS |
| GAL_GAN_OFF_POINTING | science mode for Ganymede off-nadir operations. | GALA |
| GAL_MONITORING_GAN | Primary science mode for Ganymede operations | GALA |
| GAL_FULLSCIENCE_FLYBY | Primary full science for flyby operations during closest approach. | GALA |
| GAL_LR_FB_ALBEDO | Passive albedo operations for flybys – before or after closest approach | GALA |
| GAL_IDLE | Idle operations. | GALA |
| GAL_HR_TARGET_GAN | Additional science mode for Ganymede operations | GALA |
| GAL_WARMUP_GAN | Active operation for laser warmup. This observation shall be used before real science measurements, e.g. before closest approach. | GALA |
| 3GM_JUPITER_OCCULTATION | The radio science experiment 3GM, with its 1-way dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. USO unmuted, HAA in nominal SCIENCE. | 3GM |
| 3GM_IO_PLASMA_TORUS_OCCULTATION | The radio science experiment 3GM will use navigation data in X/X and X/Ka band to characterize the Io plasma torus. The data generated by the DST in 2-way dual-frequency radio links will be the primary observable to perform this investigation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. USO will stay MUTED and HAA in nominal SCIENCE.
Note that other observation strategy would be possible (2-way triple link, 1-way X and Ka link with USO UNMUTED). | 3GM |
| 3GM_GRAVITY_GCO500_200 | Gravity measurement during GCO500 and GCO200 will use the HGA during downlink sessions. If not possible, it will use the MGA. KaT and HAA should be operating during gravity measurement. USO is OFF during this phase (except in case of BSR opportunity). HAA should be in STANDBY mode at least 48 hours before the gravity measurement. The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up. | 3GM |
| 3GM_GRAVITY_FLYBYS | Gravity measurement during flyby requires the use of the MGA.
KaT and HAA should be operating during gravity measurements
USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach.
HAA should be in CONFIGURATION mode at least 48 hours before the gravity measurement.
The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up.
Additional X/X and X/Ka (DST) link may be required whenever the Sun-
Earth-Spacecraft angle is < 60 deg to cancel noise due to the solar wind plasma. | 3GM |
| 3GM_GRAVITY_TOUR | Gravity measurement during flyby requires the use of the HGA.
KaT and HAA should be operating during gravity measurement
USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach.
HAA should be in CONFIGURATION mode at least 48 hours before the gravity measurement.
The observation should start with 1 hour of HAA in SELF_CALIBRATION mode. KaT starts with 10min of warm-up.
Additional X/X and X/Ka (DST) link may be required whenever the Sun-
Earth-Spacecraft angle is < 60 deg to cancel noise due to the solar wind plasma | 3GM |
| 3GM_BISTATIC_RADAR | Characterization of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted. The HAA shall be in SCIENCE to calibrate the sloshing potentially excited by pointing the HGA toward a moon’s Surface. | 3GM |