GAL_HR_FB | High resolution data acquisition around FB closest approach. GALA will measure the time of flight between firing and receiving the returned laser signal | GALA |
GAL_GAN_OFF_POINTING | specific observation for polar geometry with off-pointing w.r.t Nadir during GCO500.
Only to be executed TBD time. Similar profile than GAL_MONITORING_GAN but with off nadir pointing request | GALA |
DRAFT_3GM_OCCULTATION | The radio science experiment 3GM, with its dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. Occultations occur throughout the jovian tour, but their phasing is not always synchronized with the timing of dedicated Jupiter observations by the other orbiter experiments. USO unmuted, HAA in NOMINAL SCIENCE.
Note that 2 other options exist for torus occultations but are not (yet) defined in the database | 3GM |
DRAFT_3GM_GRAVITY_TOUR | KaT and HAA should be operating during gravity measurement
USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach.
HAA should be in STANDBY mode at least 48 hours before the gravity measurement.
The observation should start with 1 hour of HAA in CALIBRATION mode. KaT starts with 10min of warm-up. | 3GM |
DRAFT_3GM_GRAVITY_GCO500_200 | Gravity measurement during GCO500 and GCO200 will use the HGA during downlink sessions. If not possible, it will use the MGA. KaT and HAA should be operating during gravity measurement. USOis OFF during this phase (except in case of BSR opportunity). HAA should be in STANDBY mode at least 48 hours before the gravity measurement. The observation should start with 1 hour of HAA in CALIBRATION mode. KaT starts with 10min of warm-up. | 3GM |
DRAFT_3GM_GRAVITY_FLYBYS | Gravity measurement during flyby requires the use of the MGA.
KaT and HAA should be operating during gravity measurement
USO assumed to be ON during the full tour: this should be defined in the scenario set-up and not at 3GM observation approach.
HAA should be in STANDBY mode at least 48 hours before the gravity measurement.
The observation should start with 1 hour of HAA in CALIBRATION mode. KaT starts with 10min of warm-up. | 3GM |
DRAFT_3GM_BSR | Characterisation of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted.
The HAA shall be ON to calibrate the sloshing potentially excited by pointing the HGA toward a moon’s Surface. | 3GM |
3GM_USO_ON | USO is SWON and muted | 3GM |
3GM_RADIO_OCCULTATIONS | The radio science experiment 3GM, with its dual-frequency radio links (X and Ka-band) referenced to an ultrastable oscillator (USO), is performed as JUICE spacecraft moves in and out of occultation. USO unmuted, HAA in NOMINAL SCIENCE.
Note that 2 other options exist for torus occultations but are not (yet) defined in the database | 3GM |
3GM_HAA_STANDBY | HAA in STANDBY mode | 3GM |
3GM_HAA_CALIBRATION | HAA in CALIBRATION mode
Duration: 50min | 3GM |
3GM_GRAVITY_FOR_EPHEMERIDES | KaT ON during communication windows | 3GM |
3GM_GRAVITY | KaT and HAA for gravity science | 3GM |
3GM_BISTATIC_RADAR | characterization of the surface by determination of roughness, dielectric constant of surface material and material density. The chosen antenna points towards surface, radio signal reflects from surface and received on ground. USO unmuted | 3GM |